![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0frgp | Structured version Visualization version GIF version |
Description: The free group on zero generators is trivial. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
0frgp.g | ⊢ 𝐺 = (freeGrp‘∅) |
0frgp.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
0frgp | ⊢ 𝐵 ≈ 1𝑜 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptresid 5614 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐵 ↦ 𝑥) = ( I ↾ 𝐵) | |
2 | 0ex 4942 | . . . . . . . . . . . 12 ⊢ ∅ ∈ V | |
3 | 0frgp.g | . . . . . . . . . . . . 13 ⊢ 𝐺 = (freeGrp‘∅) | |
4 | 3 | frgpgrp 18375 | . . . . . . . . . . . 12 ⊢ (∅ ∈ V → 𝐺 ∈ Grp) |
5 | 2, 4 | ax-mp 5 | . . . . . . . . . . 11 ⊢ 𝐺 ∈ Grp |
6 | f0 6247 | . . . . . . . . . . 11 ⊢ ∅:∅⟶𝐵 | |
7 | 0frgp.b | . . . . . . . . . . . 12 ⊢ 𝐵 = (Base‘𝐺) | |
8 | eqid 2760 | . . . . . . . . . . . . . . . 16 ⊢ ( ~FG ‘∅) = ( ~FG ‘∅) | |
9 | eqid 2760 | . . . . . . . . . . . . . . . 16 ⊢ (varFGrp‘∅) = (varFGrp‘∅) | |
10 | 8, 9, 3, 7 | vrgpf 18381 | . . . . . . . . . . . . . . 15 ⊢ (∅ ∈ V → (varFGrp‘∅):∅⟶𝐵) |
11 | ffn 6206 | . . . . . . . . . . . . . . 15 ⊢ ((varFGrp‘∅):∅⟶𝐵 → (varFGrp‘∅) Fn ∅) | |
12 | 2, 10, 11 | mp2b 10 | . . . . . . . . . . . . . 14 ⊢ (varFGrp‘∅) Fn ∅ |
13 | fn0 6172 | . . . . . . . . . . . . . 14 ⊢ ((varFGrp‘∅) Fn ∅ ↔ (varFGrp‘∅) = ∅) | |
14 | 12, 13 | mpbi 220 | . . . . . . . . . . . . 13 ⊢ (varFGrp‘∅) = ∅ |
15 | 14 | eqcomi 2769 | . . . . . . . . . . . 12 ⊢ ∅ = (varFGrp‘∅) |
16 | 3, 7, 15 | frgpup3 18391 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ Grp ∧ ∅ ∈ V ∧ ∅:∅⟶𝐵) → ∃!𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅) |
17 | 5, 2, 6, 16 | mp3an 1573 | . . . . . . . . . 10 ⊢ ∃!𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ |
18 | reurmo 3300 | . . . . . . . . . 10 ⊢ (∃!𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ → ∃*𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅) | |
19 | 17, 18 | ax-mp 5 | . . . . . . . . 9 ⊢ ∃*𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ |
20 | 7 | idghm 17876 | . . . . . . . . . . 11 ⊢ (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺)) |
21 | 5, 20 | ax-mp 5 | . . . . . . . . . 10 ⊢ ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) |
22 | tru 1636 | . . . . . . . . . 10 ⊢ ⊤ | |
23 | 21, 22 | pm3.2i 470 | . . . . . . . . 9 ⊢ (( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤) |
24 | eqid 2760 | . . . . . . . . . . . 12 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
25 | 24, 7 | 0ghm 17875 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ Grp) → (𝐵 × {(0g‘𝐺)}) ∈ (𝐺 GrpHom 𝐺)) |
26 | 5, 5, 25 | mp2an 710 | . . . . . . . . . 10 ⊢ (𝐵 × {(0g‘𝐺)}) ∈ (𝐺 GrpHom 𝐺) |
27 | 26, 22 | pm3.2i 470 | . . . . . . . . 9 ⊢ ((𝐵 × {(0g‘𝐺)}) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤) |
28 | co02 5810 | . . . . . . . . . . . 12 ⊢ (𝑓 ∘ ∅) = ∅ | |
29 | 28 | bitru 1645 | . . . . . . . . . . 11 ⊢ ((𝑓 ∘ ∅) = ∅ ↔ ⊤) |
30 | 29 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑓 = ( I ↾ 𝐵) → ((𝑓 ∘ ∅) = ∅ ↔ ⊤)) |
31 | 29 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑓 = (𝐵 × {(0g‘𝐺)}) → ((𝑓 ∘ ∅) = ∅ ↔ ⊤)) |
32 | 30, 31 | rmoi 3671 | . . . . . . . . 9 ⊢ ((∃*𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ ∧ (( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤) ∧ ((𝐵 × {(0g‘𝐺)}) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤)) → ( I ↾ 𝐵) = (𝐵 × {(0g‘𝐺)})) |
33 | 19, 23, 27, 32 | mp3an 1573 | . . . . . . . 8 ⊢ ( I ↾ 𝐵) = (𝐵 × {(0g‘𝐺)}) |
34 | fconstmpt 5320 | . . . . . . . 8 ⊢ (𝐵 × {(0g‘𝐺)}) = (𝑥 ∈ 𝐵 ↦ (0g‘𝐺)) | |
35 | 1, 33, 34 | 3eqtri 2786 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵 ↦ 𝑥) = (𝑥 ∈ 𝐵 ↦ (0g‘𝐺)) |
36 | mpteqb 6461 | . . . . . . . 8 ⊢ (∀𝑥 ∈ 𝐵 𝑥 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ 𝑥) = (𝑥 ∈ 𝐵 ↦ (0g‘𝐺)) ↔ ∀𝑥 ∈ 𝐵 𝑥 = (0g‘𝐺))) | |
37 | id 22 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐵) | |
38 | 36, 37 | mprg 3064 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐵 ↦ 𝑥) = (𝑥 ∈ 𝐵 ↦ (0g‘𝐺)) ↔ ∀𝑥 ∈ 𝐵 𝑥 = (0g‘𝐺)) |
39 | 35, 38 | mpbi 220 | . . . . . 6 ⊢ ∀𝑥 ∈ 𝐵 𝑥 = (0g‘𝐺) |
40 | 39 | rspec 3069 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → 𝑥 = (0g‘𝐺)) |
41 | velsn 4337 | . . . . 5 ⊢ (𝑥 ∈ {(0g‘𝐺)} ↔ 𝑥 = (0g‘𝐺)) | |
42 | 40, 41 | sylibr 224 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ {(0g‘𝐺)}) |
43 | 42 | ssriv 3748 | . . 3 ⊢ 𝐵 ⊆ {(0g‘𝐺)} |
44 | 7, 24 | grpidcl 17651 | . . . . 5 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) |
45 | 5, 44 | ax-mp 5 | . . . 4 ⊢ (0g‘𝐺) ∈ 𝐵 |
46 | snssi 4484 | . . . 4 ⊢ ((0g‘𝐺) ∈ 𝐵 → {(0g‘𝐺)} ⊆ 𝐵) | |
47 | 45, 46 | ax-mp 5 | . . 3 ⊢ {(0g‘𝐺)} ⊆ 𝐵 |
48 | 43, 47 | eqssi 3760 | . 2 ⊢ 𝐵 = {(0g‘𝐺)} |
49 | fvex 6362 | . . 3 ⊢ (0g‘𝐺) ∈ V | |
50 | 49 | ensn1 8185 | . 2 ⊢ {(0g‘𝐺)} ≈ 1𝑜 |
51 | 48, 50 | eqbrtri 4825 | 1 ⊢ 𝐵 ≈ 1𝑜 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1632 ⊤wtru 1633 ∈ wcel 2139 ∀wral 3050 ∃!wreu 3052 ∃*wrmo 3053 Vcvv 3340 ⊆ wss 3715 ∅c0 4058 {csn 4321 class class class wbr 4804 ↦ cmpt 4881 I cid 5173 × cxp 5264 ↾ cres 5268 ∘ ccom 5270 Fn wfn 6044 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 1𝑜c1o 7722 ≈ cen 8118 Basecbs 16059 0gc0g 16302 Grpcgrp 17623 GrpHom cghm 17858 ~FG cefg 18319 freeGrpcfrgp 18320 varFGrpcvrgp 18321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-ot 4330 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-2o 7730 df-oadd 7733 df-er 7911 df-ec 7913 df-qs 7917 df-map 8025 df-pm 8026 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-sup 8513 df-inf 8514 df-card 8955 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-xnn0 11556 df-z 11570 df-dec 11686 df-uz 11880 df-fz 12520 df-fzo 12660 df-seq 12996 df-hash 13312 df-word 13485 df-lsw 13486 df-concat 13487 df-s1 13488 df-substr 13489 df-splice 13490 df-reverse 13491 df-s2 13793 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-ress 16067 df-plusg 16156 df-mulr 16157 df-sca 16159 df-vsca 16160 df-ip 16161 df-tset 16162 df-ple 16163 df-ds 16166 df-0g 16304 df-gsum 16305 df-imas 16370 df-qus 16371 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-mhm 17536 df-submnd 17537 df-frmd 17587 df-vrmd 17588 df-grp 17626 df-minusg 17627 df-ghm 17859 df-efg 18322 df-frgp 18323 df-vrgp 18324 |
This theorem is referenced by: frgpcyg 20124 |
Copyright terms: Public domain | W3C validator |