![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0er | Structured version Visualization version GIF version |
Description: The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015.) (Proof shortened by AV, 1-May-2021.) |
Ref | Expression |
---|---|
0er | ⊢ ∅ Er ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rel0 5399 | . 2 ⊢ Rel ∅ | |
2 | df-br 4805 | . . 3 ⊢ (𝑥∅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ∅) | |
3 | noel 4062 | . . . 4 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
4 | 3 | pm2.21i 116 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ∅ → 𝑦∅𝑥) |
5 | 2, 4 | sylbi 207 | . 2 ⊢ (𝑥∅𝑦 → 𝑦∅𝑥) |
6 | 3 | pm2.21i 116 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ∅ → 𝑥∅𝑧) |
7 | 2, 6 | sylbi 207 | . . 3 ⊢ (𝑥∅𝑦 → 𝑥∅𝑧) |
8 | 7 | adantr 472 | . 2 ⊢ ((𝑥∅𝑦 ∧ 𝑦∅𝑧) → 𝑥∅𝑧) |
9 | noel 4062 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
10 | noel 4062 | . . . 4 ⊢ ¬ 〈𝑥, 𝑥〉 ∈ ∅ | |
11 | 9, 10 | 2false 364 | . . 3 ⊢ (𝑥 ∈ ∅ ↔ 〈𝑥, 𝑥〉 ∈ ∅) |
12 | df-br 4805 | . . 3 ⊢ (𝑥∅𝑥 ↔ 〈𝑥, 𝑥〉 ∈ ∅) | |
13 | 11, 12 | bitr4i 267 | . 2 ⊢ (𝑥 ∈ ∅ ↔ 𝑥∅𝑥) |
14 | 1, 5, 8, 13 | iseri 7938 | 1 ⊢ ∅ Er ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2139 ∅c0 4058 〈cop 4327 class class class wbr 4804 Er wer 7908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-er 7911 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |