![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0elunit | Structured version Visualization version GIF version |
Description: Zero is an element of the closed unit. (Contributed by Scott Fenton, 11-Jun-2013.) |
Ref | Expression |
---|---|
0elunit | ⊢ 0 ∈ (0[,]1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10232 | . 2 ⊢ 0 ∈ ℝ | |
2 | 0le0 11302 | . 2 ⊢ 0 ≤ 0 | |
3 | 0le1 10743 | . 2 ⊢ 0 ≤ 1 | |
4 | 1re 10231 | . . 3 ⊢ 1 ∈ ℝ | |
5 | 1, 4 | elicc2i 12432 | . 2 ⊢ (0 ∈ (0[,]1) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 ≤ 1)) |
6 | 1, 2, 3, 5 | mpbir3an 1427 | 1 ⊢ 0 ∈ (0[,]1) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2139 class class class wbr 4804 (class class class)co 6813 ℝcr 10127 0cc0 10128 1c1 10129 ≤ cle 10267 [,]cicc 12371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-icc 12375 |
This theorem is referenced by: xrhmeo 22946 htpycom 22976 htpyid 22977 htpyco1 22978 htpyco2 22979 htpycc 22980 phtpy01 22985 phtpycom 22988 phtpyid 22989 phtpyco2 22990 phtpycc 22991 reparphti 22997 pcocn 23017 pcohtpylem 23019 pcoptcl 23021 pcopt 23022 pcopt2 23023 pcoass 23024 pcorevcl 23025 pcorevlem 23026 pi1xfrf 23053 pi1xfr 23055 pi1xfrcnvlem 23056 pi1xfrcnv 23057 pi1cof 23059 pi1coghm 23061 dvlipcn 23956 lgamgulmlem2 24955 ttgcontlem1 25964 brbtwn2 25984 axsegconlem1 25996 axpaschlem 26019 axcontlem7 26049 axcontlem8 26050 xrge0iifcnv 30288 xrge0iifiso 30290 xrge0iifhom 30292 cnpconn 31519 pconnconn 31520 txpconn 31521 ptpconn 31522 indispconn 31523 connpconn 31524 sconnpi1 31528 txsconnlem 31529 txsconn 31530 cvxpconn 31531 cvxsconn 31532 cvmliftlem14 31586 cvmlift2lem2 31593 cvmlift2lem3 31594 cvmlift2lem8 31599 cvmlift2lem12 31603 cvmlift2lem13 31604 cvmliftphtlem 31606 cvmliftpht 31607 cvmlift3lem1 31608 cvmlift3lem2 31609 cvmlift3lem4 31611 cvmlift3lem5 31612 cvmlift3lem6 31613 cvmlift3lem9 31616 |
Copyright terms: Public domain | W3C validator |