Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0elros Structured version   Visualization version   GIF version

Theorem 0elros 30564
Description: A ring of sets contains the empty set. (Contributed by Thierry Arnoux, 18-Jul-2020.)
Hypothesis
Ref Expression
isros.1 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
Assertion
Ref Expression
0elros (𝑆𝑄 → ∅ ∈ 𝑆)
Distinct variable groups:   𝑂,𝑠   𝑆,𝑠,𝑥,𝑦
Allowed substitution hints:   𝑄(𝑥,𝑦,𝑠)   𝑂(𝑥,𝑦)

Proof of Theorem 0elros
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isros.1 . . 3 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
21isros 30562 . 2 (𝑆𝑄 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀𝑢𝑆𝑣𝑆 ((𝑢𝑣) ∈ 𝑆 ∧ (𝑢𝑣) ∈ 𝑆)))
32simp2bi 1141 1 (𝑆𝑄 → ∅ ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2140  wral 3051  {crab 3055  cdif 3713  cun 3714  c0 4059  𝒫 cpw 4303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ral 3056  df-rab 3060  df-v 3343  df-dif 3719  df-un 3721
This theorem is referenced by:  fiunelros  30568  rossros  30574
  Copyright terms: Public domain W3C validator