![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0elpw | Structured version Visualization version GIF version |
Description: Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.) |
Ref | Expression |
---|---|
0elpw | ⊢ ∅ ∈ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4117 | . 2 ⊢ ∅ ⊆ 𝐴 | |
2 | 0ex 4925 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | elpw 4304 | . 2 ⊢ (∅ ∈ 𝒫 𝐴 ↔ ∅ ⊆ 𝐴) |
4 | 1, 3 | mpbir 221 | 1 ⊢ ∅ ∈ 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2145 ⊆ wss 3723 ∅c0 4063 𝒫 cpw 4298 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-nul 4924 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-v 3353 df-dif 3726 df-in 3730 df-ss 3737 df-nul 4064 df-pw 4300 |
This theorem is referenced by: pwne0 4967 marypha1lem 8499 brwdom2 8638 canthwdom 8644 pwcdadom 9244 isfin1-3 9414 canthp1lem2 9681 ixxssxr 12392 incexc 14776 smupf 15408 hashbc0 15916 ramz2 15935 mreexexlem3d 16514 acsfn 16527 isdrs2 17147 fpwipodrs 17372 clsval2 21075 mretopd 21117 comppfsc 21556 alexsubALTlem2 22072 alexsubALTlem4 22074 eupth2lems 27418 esum0 30451 esumcst 30465 esumpcvgval 30480 prsiga 30534 pwldsys 30560 ldgenpisyslem1 30566 carsggect 30720 kur14 31536 0hf 32621 bj-tagss 33299 bj-0int 33387 bj-mooreset 33388 bj-ismoored0 33393 topdifinfindis 33531 0totbnd 33904 heiborlem6 33947 istopclsd 37789 ntrkbimka 38862 ntrk0kbimka 38863 clsk1indlem0 38865 ntrclscls00 38890 ntrneicls11 38914 0pwfi 39748 dvnprodlem3 40678 pwsal 41049 salexct 41066 sge0rnn0 41099 sge00 41107 psmeasure 41202 caragen0 41237 0ome 41260 isomenndlem 41261 ovn0 41297 ovnsubadd2lem 41376 smfresal 41512 sprsymrelfvlem 42265 lincval0 42729 lco0 42741 linds0 42779 |
Copyright terms: Public domain | W3C validator |