![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0elcarsg | Structured version Visualization version GIF version |
Description: The empty set is Caratheodory measurable. (Contributed by Thierry Arnoux, 30-May-2020.) |
Ref | Expression |
---|---|
carsgval.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
carsgval.2 | ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
baselcarsg.1 | ⊢ (𝜑 → (𝑀‘∅) = 0) |
Ref | Expression |
---|---|
0elcarsg | ⊢ (𝜑 → ∅ ∈ (toCaraSiga‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4114 | . . 3 ⊢ ∅ ⊆ 𝑂 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ∅ ⊆ 𝑂) |
3 | in0 4110 | . . . . . . . 8 ⊢ (𝑒 ∩ ∅) = ∅ | |
4 | 3 | fveq2i 6335 | . . . . . . 7 ⊢ (𝑀‘(𝑒 ∩ ∅)) = (𝑀‘∅) |
5 | baselcarsg.1 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘∅) = 0) | |
6 | 4, 5 | syl5eq 2816 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑒 ∩ ∅)) = 0) |
7 | dif0 4095 | . . . . . . . 8 ⊢ (𝑒 ∖ ∅) = 𝑒 | |
8 | 7 | fveq2i 6335 | . . . . . . 7 ⊢ (𝑀‘(𝑒 ∖ ∅)) = (𝑀‘𝑒) |
9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑒 ∖ ∅)) = (𝑀‘𝑒)) |
10 | 6, 9 | oveq12d 6810 | . . . . 5 ⊢ (𝜑 → ((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (0 +𝑒 (𝑀‘𝑒))) |
11 | 10 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (0 +𝑒 (𝑀‘𝑒))) |
12 | iccssxr 12460 | . . . . . 6 ⊢ (0[,]+∞) ⊆ ℝ* | |
13 | carsgval.2 | . . . . . . 7 ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) | |
14 | 13 | ffvelrnda 6502 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘𝑒) ∈ (0[,]+∞)) |
15 | 12, 14 | sseldi 3748 | . . . . 5 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘𝑒) ∈ ℝ*) |
16 | xaddid2 12277 | . . . . 5 ⊢ ((𝑀‘𝑒) ∈ ℝ* → (0 +𝑒 (𝑀‘𝑒)) = (𝑀‘𝑒)) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (0 +𝑒 (𝑀‘𝑒)) = (𝑀‘𝑒)) |
18 | 11, 17 | eqtrd 2804 | . . 3 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (𝑀‘𝑒)) |
19 | 18 | ralrimiva 3114 | . 2 ⊢ (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (𝑀‘𝑒)) |
20 | carsgval.1 | . . 3 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
21 | 20, 13 | elcarsg 30701 | . 2 ⊢ (𝜑 → (∅ ∈ (toCaraSiga‘𝑀) ↔ (∅ ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (𝑀‘𝑒)))) |
22 | 2, 19, 21 | mpbir2and 684 | 1 ⊢ (𝜑 → ∅ ∈ (toCaraSiga‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ∀wral 3060 ∖ cdif 3718 ∩ cin 3720 ⊆ wss 3721 ∅c0 4061 𝒫 cpw 4295 ⟶wf 6027 ‘cfv 6031 (class class class)co 6792 0cc0 10137 +∞cpnf 10272 ℝ*cxr 10274 +𝑒 cxad 12148 [,]cicc 12382 toCaraSigaccarsg 30697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-1st 7314 df-2nd 7315 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-xadd 12151 df-icc 12386 df-carsg 30698 |
This theorem is referenced by: carsggect 30714 omsmeas 30719 |
Copyright terms: Public domain | W3C validator |