Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0elcarsg Structured version   Visualization version   GIF version

Theorem 0elcarsg 30703
 Description: The empty set is Caratheodory measurable. (Contributed by Thierry Arnoux, 30-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
baselcarsg.1 (𝜑 → (𝑀‘∅) = 0)
Assertion
Ref Expression
0elcarsg (𝜑 → ∅ ∈ (toCaraSiga‘𝑀))

Proof of Theorem 0elcarsg
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 0ss 4114 . . 3 ∅ ⊆ 𝑂
21a1i 11 . 2 (𝜑 → ∅ ⊆ 𝑂)
3 in0 4110 . . . . . . . 8 (𝑒 ∩ ∅) = ∅
43fveq2i 6335 . . . . . . 7 (𝑀‘(𝑒 ∩ ∅)) = (𝑀‘∅)
5 baselcarsg.1 . . . . . . 7 (𝜑 → (𝑀‘∅) = 0)
64, 5syl5eq 2816 . . . . . 6 (𝜑 → (𝑀‘(𝑒 ∩ ∅)) = 0)
7 dif0 4095 . . . . . . . 8 (𝑒 ∖ ∅) = 𝑒
87fveq2i 6335 . . . . . . 7 (𝑀‘(𝑒 ∖ ∅)) = (𝑀𝑒)
98a1i 11 . . . . . 6 (𝜑 → (𝑀‘(𝑒 ∖ ∅)) = (𝑀𝑒))
106, 9oveq12d 6810 . . . . 5 (𝜑 → ((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (0 +𝑒 (𝑀𝑒)))
1110adantr 466 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (0 +𝑒 (𝑀𝑒)))
12 iccssxr 12460 . . . . . 6 (0[,]+∞) ⊆ ℝ*
13 carsgval.2 . . . . . . 7 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
1413ffvelrnda 6502 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ (0[,]+∞))
1512, 14sseldi 3748 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ ℝ*)
16 xaddid2 12277 . . . . 5 ((𝑀𝑒) ∈ ℝ* → (0 +𝑒 (𝑀𝑒)) = (𝑀𝑒))
1715, 16syl 17 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → (0 +𝑒 (𝑀𝑒)) = (𝑀𝑒))
1811, 17eqtrd 2804 . . 3 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (𝑀𝑒))
1918ralrimiva 3114 . 2 (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (𝑀𝑒))
20 carsgval.1 . . 3 (𝜑𝑂𝑉)
2120, 13elcarsg 30701 . 2 (𝜑 → (∅ ∈ (toCaraSiga‘𝑀) ↔ (∅ ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (𝑀𝑒))))
222, 19, 21mpbir2and 684 1 (𝜑 → ∅ ∈ (toCaraSiga‘𝑀))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1630   ∈ wcel 2144  ∀wral 3060   ∖ cdif 3718   ∩ cin 3720   ⊆ wss 3721  ∅c0 4061  𝒫 cpw 4295  ⟶wf 6027  ‘cfv 6031  (class class class)co 6792  0cc0 10137  +∞cpnf 10272  ℝ*cxr 10274   +𝑒 cxad 12148  [,]cicc 12382  toCaraSigaccarsg 30697 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-1st 7314  df-2nd 7315  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-xadd 12151  df-icc 12386  df-carsg 30698 This theorem is referenced by:  carsggect  30714  omsmeas  30719
 Copyright terms: Public domain W3C validator