![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0e0iccpnf | Structured version Visualization version GIF version |
Description: 0 is a member of (0[,]+∞). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0e0iccpnf | ⊢ 0 ∈ (0[,]+∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 10270 | . 2 ⊢ 0 ∈ ℝ* | |
2 | 0le0 11294 | . 2 ⊢ 0 ≤ 0 | |
3 | elxrge0 12466 | . 2 ⊢ (0 ∈ (0[,]+∞) ↔ (0 ∈ ℝ* ∧ 0 ≤ 0)) | |
4 | 1, 2, 3 | mpbir2an 993 | 1 ⊢ 0 ∈ (0[,]+∞) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2131 class class class wbr 4796 (class class class)co 6805 0cc0 10120 +∞cpnf 10255 ℝ*cxr 10257 ≤ cle 10259 [,]cicc 12363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-i2m1 10188 ax-1ne0 10189 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-icc 12367 |
This theorem is referenced by: xrge0subm 19981 itg2const2 23699 itg2splitlem 23706 itg2split 23707 itg2gt0 23718 itg2cnlem2 23720 itg2cn 23721 iblss 23762 itgle 23767 itgeqa 23771 ibladdlem 23777 iblabs 23786 iblabsr 23787 iblmulc2 23788 bddmulibl 23796 xrge0infss 29826 xrge00 29987 unitssxrge0 30247 xrge0mulc1cn 30288 esum0 30412 esumpad 30418 esumpad2 30419 esumrnmpt2 30431 esumpinfval 30436 esummulc1 30444 ddemeas 30600 oms0 30660 itg2gt0cn 33770 ibladdnclem 33771 iblabsnc 33779 iblmulc2nc 33780 bddiblnc 33785 ftc1anclem7 33796 ftc1anclem8 33797 ftc1anc 33798 iblsplit 40677 gsumge0cl 41083 sge0cl 41093 sge0ss 41124 0ome 41241 ovnf 41275 |
Copyright terms: Public domain | W3C validator |