![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0dif | Structured version Visualization version GIF version |
Description: The difference between the empty set and a class. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
0dif | ⊢ (∅ ∖ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 3880 | . 2 ⊢ (∅ ∖ 𝐴) ⊆ ∅ | |
2 | ss0 4117 | . 2 ⊢ ((∅ ∖ 𝐴) ⊆ ∅ → (∅ ∖ 𝐴) = ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∅ ∖ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∖ cdif 3712 ⊆ wss 3715 ∅c0 4058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-dif 3718 df-in 3722 df-ss 3729 df-nul 4059 |
This theorem is referenced by: symdif0 4749 fresaun 6236 dffv2 6434 ablfac1eulem 18691 itgioo 23801 nbgr0vtx 26472 imadifxp 29742 sibf0 30726 ballotlemfval0 30887 ballotlemgun 30916 mdvval 31729 fzdifsuc2 40041 ibliooicc 40708 |
Copyright terms: Public domain | W3C validator |