MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0cxp Structured version   Visualization version   GIF version

Theorem 0cxp 24632
Description: Value of the complex power function when the first argument is zero. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
0cxp ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0↑𝑐𝐴) = 0)

Proof of Theorem 0cxp
StepHypRef Expression
1 0cn 10233 . . . 4 0 ∈ ℂ
2 cxpval 24630 . . . 4 ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (0↑𝑐𝐴) = if(0 = 0, if(𝐴 = 0, 1, 0), (exp‘(𝐴 · (log‘0)))))
31, 2mpan 662 . . 3 (𝐴 ∈ ℂ → (0↑𝑐𝐴) = if(0 = 0, if(𝐴 = 0, 1, 0), (exp‘(𝐴 · (log‘0)))))
4 eqid 2770 . . . 4 0 = 0
54iftruei 4230 . . 3 if(0 = 0, if(𝐴 = 0, 1, 0), (exp‘(𝐴 · (log‘0)))) = if(𝐴 = 0, 1, 0)
63, 5syl6eq 2820 . 2 (𝐴 ∈ ℂ → (0↑𝑐𝐴) = if(𝐴 = 0, 1, 0))
7 ifnefalse 4235 . 2 (𝐴 ≠ 0 → if(𝐴 = 0, 1, 0) = 0)
86, 7sylan9eq 2824 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0↑𝑐𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wcel 2144  wne 2942  ifcif 4223  cfv 6031  (class class class)co 6792  cc 10135  0cc0 10137  1c1 10138   · cmul 10142  expce 14997  logclog 24521  𝑐ccxp 24522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pr 5034  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-mulcl 10199  ax-i2m1 10205
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-iota 5994  df-fun 6033  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-cxp 24524
This theorem is referenced by:  cxpexp  24634  cxpeq0  24644  cxpge0  24649  mulcxplem  24650  cxpmul2  24655  cxple2  24663  cxpsqrt  24669  0cxpd  24676  abscxpbnd  24714
  Copyright terms: Public domain W3C validator