![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0conngr | Structured version Visualization version GIF version |
Description: A graph without vertices is connected. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.) |
Ref | Expression |
---|---|
0conngr | ⊢ ∅ ∈ ConnGraph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4217 | . 2 ⊢ ∀𝑘 ∈ ∅ ∀𝑛 ∈ ∅ ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘∅)𝑛)𝑝 | |
2 | 0ex 4924 | . . 3 ⊢ ∅ ∈ V | |
3 | vtxval0 26152 | . . . . 5 ⊢ (Vtx‘∅) = ∅ | |
4 | 3 | eqcomi 2780 | . . . 4 ⊢ ∅ = (Vtx‘∅) |
5 | 4 | isconngr 27369 | . . 3 ⊢ (∅ ∈ V → (∅ ∈ ConnGraph ↔ ∀𝑘 ∈ ∅ ∀𝑛 ∈ ∅ ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘∅)𝑛)𝑝)) |
6 | 2, 5 | ax-mp 5 | . 2 ⊢ (∅ ∈ ConnGraph ↔ ∀𝑘 ∈ ∅ ∀𝑛 ∈ ∅ ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘∅)𝑛)𝑝) |
7 | 1, 6 | mpbir 221 | 1 ⊢ ∅ ∈ ConnGraph |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∃wex 1852 ∈ wcel 2145 ∀wral 3061 Vcvv 3351 ∅c0 4063 class class class wbr 4786 ‘cfv 6031 (class class class)co 6793 Vtxcvtx 26095 PathsOncpthson 26845 ConnGraphcconngr 27366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 df-ov 6796 df-slot 16068 df-base 16070 df-vtx 26097 df-conngr 27367 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |