HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  0cnfn Structured version   Visualization version   GIF version

Theorem 0cnfn 29069
Description: The identically zero function is a continuous Hilbert space functional. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
0cnfn ( ℋ × {0}) ∈ ContFn

Proof of Theorem 0cnfn
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 10145 . . 3 0 ∈ ℂ
21fconst6 6208 . 2 ( ℋ × {0}): ℋ⟶ℂ
3 1rp 11950 . . . 4 1 ∈ ℝ+
4 c0ex 10147 . . . . . . . . . . . . 13 0 ∈ V
54fvconst2 6585 . . . . . . . . . . . 12 (𝑤 ∈ ℋ → (( ℋ × {0})‘𝑤) = 0)
64fvconst2 6585 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (( ℋ × {0})‘𝑥) = 0)
75, 6oveqan12rd 6785 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥)) = (0 − 0))
87adantlr 753 . . . . . . . . . 10 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → ((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥)) = (0 − 0))
9 0m0e0 11243 . . . . . . . . . 10 (0 − 0) = 0
108, 9syl6eq 2774 . . . . . . . . 9 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → ((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥)) = 0)
1110fveq2d 6308 . . . . . . . 8 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) = (abs‘0))
12 abs0 14145 . . . . . . . 8 (abs‘0) = 0
1311, 12syl6eq 2774 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) = 0)
14 rpgt0 11958 . . . . . . . 8 (𝑦 ∈ ℝ+ → 0 < 𝑦)
1514ad2antlr 765 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → 0 < 𝑦)
1613, 15eqbrtrd 4782 . . . . . 6 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦)
1716a1d 25 . . . . 5 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → ((norm‘(𝑤 𝑥)) < 1 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦))
1817ralrimiva 3068 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) → ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 1 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦))
19 breq2 4764 . . . . . . 7 (𝑧 = 1 → ((norm‘(𝑤 𝑥)) < 𝑧 ↔ (norm‘(𝑤 𝑥)) < 1))
2019imbi1d 330 . . . . . 6 (𝑧 = 1 → (((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦) ↔ ((norm‘(𝑤 𝑥)) < 1 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦)))
2120ralbidv 3088 . . . . 5 (𝑧 = 1 → (∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦) ↔ ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 1 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦)))
2221rspcev 3413 . . . 4 ((1 ∈ ℝ+ ∧ ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 1 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦)) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦))
233, 18, 22sylancr 698 . . 3 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦))
2423rgen2 3077 . 2 𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦)
25 elcnfn 28971 . 2 (( ℋ × {0}) ∈ ContFn ↔ (( ℋ × {0}): ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦)))
262, 24, 25mpbir2an 993 1 ( ℋ × {0}) ∈ ContFn
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1596  wcel 2103  wral 3014  wrex 3015  {csn 4285   class class class wbr 4760   × cxp 5216  wf 5997  cfv 6001  (class class class)co 6765  cc 10047  0cc0 10049  1c1 10050   < clt 10187  cmin 10379  +crp 11946  abscabs 14094  chil 28006  normcno 28010   cmv 28012  ContFnccnfn 28040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-hilex 28086
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-er 7862  df-map 7976  df-en 8073  df-dom 8074  df-sdom 8075  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-n0 11406  df-z 11491  df-uz 11801  df-rp 11947  df-seq 12917  df-exp 12976  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-cnfn 28936
This theorem is referenced by:  nmcfnex  29142  nmcfnlb  29143  riesz4  29153  riesz1  29154
  Copyright terms: Public domain W3C validator