![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > 0cnfn | Structured version Visualization version GIF version |
Description: The identically zero function is a continuous Hilbert space functional. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0cnfn | ⊢ ( ℋ × {0}) ∈ ContFn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 10145 | . . 3 ⊢ 0 ∈ ℂ | |
2 | 1 | fconst6 6208 | . 2 ⊢ ( ℋ × {0}): ℋ⟶ℂ |
3 | 1rp 11950 | . . . 4 ⊢ 1 ∈ ℝ+ | |
4 | c0ex 10147 | . . . . . . . . . . . . 13 ⊢ 0 ∈ V | |
5 | 4 | fvconst2 6585 | . . . . . . . . . . . 12 ⊢ (𝑤 ∈ ℋ → (( ℋ × {0})‘𝑤) = 0) |
6 | 4 | fvconst2 6585 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ ℋ → (( ℋ × {0})‘𝑥) = 0) |
7 | 5, 6 | oveqan12rd 6785 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥)) = (0 − 0)) |
8 | 7 | adantlr 753 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → ((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥)) = (0 − 0)) |
9 | 0m0e0 11243 | . . . . . . . . . 10 ⊢ (0 − 0) = 0 | |
10 | 8, 9 | syl6eq 2774 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → ((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥)) = 0) |
11 | 10 | fveq2d 6308 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) = (abs‘0)) |
12 | abs0 14145 | . . . . . . . 8 ⊢ (abs‘0) = 0 | |
13 | 11, 12 | syl6eq 2774 | . . . . . . 7 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) = 0) |
14 | rpgt0 11958 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ+ → 0 < 𝑦) | |
15 | 14 | ad2antlr 765 | . . . . . . 7 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → 0 < 𝑦) |
16 | 13, 15 | eqbrtrd 4782 | . . . . . 6 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦) |
17 | 16 | a1d 25 | . . . . 5 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → ((normℎ‘(𝑤 −ℎ 𝑥)) < 1 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦)) |
18 | 17 | ralrimiva 3068 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) → ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 1 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦)) |
19 | breq2 4764 | . . . . . . 7 ⊢ (𝑧 = 1 → ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 ↔ (normℎ‘(𝑤 −ℎ 𝑥)) < 1)) | |
20 | 19 | imbi1d 330 | . . . . . 6 ⊢ (𝑧 = 1 → (((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦) ↔ ((normℎ‘(𝑤 −ℎ 𝑥)) < 1 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦))) |
21 | 20 | ralbidv 3088 | . . . . 5 ⊢ (𝑧 = 1 → (∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦) ↔ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 1 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦))) |
22 | 21 | rspcev 3413 | . . . 4 ⊢ ((1 ∈ ℝ+ ∧ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 1 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦)) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦)) |
23 | 3, 18, 22 | sylancr 698 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦)) |
24 | 23 | rgen2 3077 | . 2 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦) |
25 | elcnfn 28971 | . 2 ⊢ (( ℋ × {0}) ∈ ContFn ↔ (( ℋ × {0}): ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦))) | |
26 | 2, 24, 25 | mpbir2an 993 | 1 ⊢ ( ℋ × {0}) ∈ ContFn |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1596 ∈ wcel 2103 ∀wral 3014 ∃wrex 3015 {csn 4285 class class class wbr 4760 × cxp 5216 ⟶wf 5997 ‘cfv 6001 (class class class)co 6765 ℂcc 10047 0cc0 10049 1c1 10050 < clt 10187 − cmin 10379 ℝ+crp 11946 abscabs 14094 ℋchil 28006 normℎcno 28010 −ℎ cmv 28012 ContFnccnfn 28040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 ax-hilex 28086 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-2nd 7286 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-er 7862 df-map 7976 df-en 8073 df-dom 8074 df-sdom 8075 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-div 10798 df-nn 11134 df-2 11192 df-n0 11406 df-z 11491 df-uz 11801 df-rp 11947 df-seq 12917 df-exp 12976 df-cj 13959 df-re 13960 df-im 13961 df-sqrt 14095 df-abs 14096 df-cnfn 28936 |
This theorem is referenced by: nmcfnex 29142 nmcfnlb 29143 riesz4 29153 riesz1 29154 |
Copyright terms: Public domain | W3C validator |