![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0cnf | Structured version Visualization version GIF version |
Description: The empty set is a continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
0cnf | ⊢ ∅ ∈ ({∅} Cn {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f0 6247 | . 2 ⊢ ∅:∅⟶∅ | |
2 | cnv0 5693 | . . . . . 6 ⊢ ◡∅ = ∅ | |
3 | 2 | imaeq1i 5621 | . . . . 5 ⊢ (◡∅ “ 𝑥) = (∅ “ 𝑥) |
4 | 0ima 5640 | . . . . 5 ⊢ (∅ “ 𝑥) = ∅ | |
5 | 3, 4 | eqtri 2782 | . . . 4 ⊢ (◡∅ “ 𝑥) = ∅ |
6 | 0ex 4942 | . . . . 5 ⊢ ∅ ∈ V | |
7 | 6 | snid 4353 | . . . 4 ⊢ ∅ ∈ {∅} |
8 | 5, 7 | eqeltri 2835 | . . 3 ⊢ (◡∅ “ 𝑥) ∈ {∅} |
9 | 8 | rgenw 3062 | . 2 ⊢ ∀𝑥 ∈ {∅} (◡∅ “ 𝑥) ∈ {∅} |
10 | sn0topon 21004 | . . 3 ⊢ {∅} ∈ (TopOn‘∅) | |
11 | iscn 21241 | . . 3 ⊢ (({∅} ∈ (TopOn‘∅) ∧ {∅} ∈ (TopOn‘∅)) → (∅ ∈ ({∅} Cn {∅}) ↔ (∅:∅⟶∅ ∧ ∀𝑥 ∈ {∅} (◡∅ “ 𝑥) ∈ {∅}))) | |
12 | 10, 10, 11 | mp2an 710 | . 2 ⊢ (∅ ∈ ({∅} Cn {∅}) ↔ (∅:∅⟶∅ ∧ ∀𝑥 ∈ {∅} (◡∅ “ 𝑥) ∈ {∅})) |
13 | 1, 9, 12 | mpbir2an 993 | 1 ⊢ ∅ ∈ ({∅} Cn {∅}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∈ wcel 2139 ∀wral 3050 ∅c0 4058 {csn 4321 ◡ccnv 5265 “ cima 5269 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 TopOnctopon 20917 Cn ccn 21230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-map 8025 df-top 20901 df-topon 20918 df-cn 21233 |
This theorem is referenced by: cncfiooicc 40610 |
Copyright terms: Public domain | W3C validator |