![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0cn | Structured version Visualization version GIF version |
Description: 0 is a complex number. See also 0cnALT 10458. (Contributed by NM, 19-Feb-2005.) |
Ref | Expression |
---|---|
0cn | ⊢ 0 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-i2m1 10192 | . 2 ⊢ ((i · i) + 1) = 0 | |
2 | ax-icn 10183 | . . . 4 ⊢ i ∈ ℂ | |
3 | mulcl 10208 | . . . 4 ⊢ ((i ∈ ℂ ∧ i ∈ ℂ) → (i · i) ∈ ℂ) | |
4 | 2, 2, 3 | mp2an 710 | . . 3 ⊢ (i · i) ∈ ℂ |
5 | ax-1cn 10182 | . . 3 ⊢ 1 ∈ ℂ | |
6 | addcl 10206 | . . 3 ⊢ (((i · i) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · i) + 1) ∈ ℂ) | |
7 | 4, 5, 6 | mp2an 710 | . 2 ⊢ ((i · i) + 1) ∈ ℂ |
8 | 1, 7 | eqeltrri 2832 | 1 ⊢ 0 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2135 (class class class)co 6809 ℂcc 10122 0cc0 10124 1c1 10125 ici 10126 + caddc 10127 · cmul 10129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-9 2144 ax-ext 2736 ax-1cn 10182 ax-icn 10183 ax-addcl 10184 ax-mulcl 10186 ax-i2m1 10192 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1850 df-cleq 2749 df-clel 2752 |
This theorem is referenced by: 0cnd 10221 c0ex 10222 1re 10227 00id 10399 mul02lem1 10400 mul02 10402 mul01 10403 addid1 10404 addid2 10407 negcl 10469 subid 10488 subid1 10489 neg0 10515 negid 10516 negsub 10517 subneg 10518 negneg 10519 negeq0 10523 negsubdi 10525 renegcli 10530 mulneg1 10654 msqge0 10737 ixi 10844 muleqadd 10859 div0 10903 ofsubge0 11207 0m0e0 11318 elznn0 11580 ser0 13043 0exp0e1 13055 0exp 13085 sq0 13145 sqeqor 13168 binom2 13169 bcval5 13295 s1co 13775 shftval3 14011 shftidt2 14016 cjne0 14098 sqrt0 14177 abs0 14220 abs00bd 14226 abs2dif 14267 clim0 14432 climz 14475 serclim0 14503 rlimneg 14572 sumrblem 14637 fsumcvg 14638 summolem2a 14641 sumss 14650 fsumss 14651 fsumcvg2 14653 fsumsplit 14666 sumsplit 14694 fsumrelem 14734 fsumrlim 14738 fsumo1 14739 0fallfac 14963 0risefac 14964 binomfallfac 14967 fsumcube 14986 ef0 15016 eftlub 15034 sin0 15074 tan0 15076 divalglem9 15322 sadadd2lem2 15370 sadadd3 15381 bezout 15458 pcmpt2 15795 4sqlem11 15857 ramcl 15931 4001lem2 16047 odadd1 18447 cnaddablx 18467 cnaddabl 18468 cnaddid 18469 frgpnabllem1 18472 cncrng 19965 cnfld0 19968 cnbl0 22774 cnblcld 22775 cnfldnm 22779 xrge0gsumle 22833 xrge0tsms 22834 cnheibor 22951 cnlmod 23136 csscld 23244 clsocv 23245 cnflduss 23348 cnfldcusp 23349 rrxmvallem 23383 rrxmval 23384 mbfss 23608 mbfmulc2lem 23609 0plef 23634 0pledm 23635 itg1ge0 23648 itg1addlem4 23661 itg2splitlem 23710 itg2addlem 23720 ibl0 23748 iblcnlem 23750 iblss2 23767 itgss3 23776 dvconst 23875 dvcnp2 23878 dvrec 23913 dvexp3 23936 dveflem 23937 dvef 23938 dv11cn 23959 lhop1lem 23971 plyun0 24148 plyeq0lem 24161 coeeulem 24175 coeeu 24176 coef3 24183 dgrle 24194 0dgrb 24197 coefv0 24199 coemulc 24206 coe1termlem 24209 coe1term 24210 dgr0 24213 dgrmulc 24222 dgrcolem2 24225 vieta1lem2 24261 iaa 24275 aareccl 24276 aalioulem3 24284 taylthlem2 24323 psercn 24375 pserdvlem2 24377 abelthlem2 24381 abelthlem3 24382 abelthlem5 24384 abelthlem7 24387 abelth 24390 sin2kpi 24430 cos2kpi 24431 sinkpi 24466 efopn 24599 logtayl 24601 cxpval 24605 0cxp 24607 cxpexp 24609 cxpcl 24615 cxpge0 24624 mulcxplem 24625 mulcxp 24626 cxpmul2 24630 dvsqrt 24678 dvcnsqrt 24680 cxpcn3 24684 abscxpbnd 24689 efrlim 24891 ftalem2 24995 ftalem3 24996 ftalem4 24997 ftalem5 24998 ftalem7 25000 prmorcht 25099 muinv 25114 1sgm2ppw 25120 logfacbnd3 25143 logexprlim 25145 dchrelbas2 25157 dchrmulid2 25172 dchrfi 25175 dchrinv 25181 lgsdir2 25250 lgsdir 25252 dchrvmasumiflem1 25385 dchrvmasumiflem2 25386 rpvmasum2 25396 log2sumbnd 25428 selberg2lem 25434 logdivbnd 25440 ax5seglem8 26011 axlowdimlem6 26022 axlowdimlem13 26029 ex-co 27602 avril1 27626 vc0 27734 vcz 27735 cnaddabloOLD 27741 cnidOLD 27742 ipasslem8 27997 siilem2 28012 hvmul0 28186 hi01 28258 norm-iii 28302 h1de2ctlem 28719 pjmuli 28853 pjneli 28887 eigre 28999 eigorth 29002 elnlfn 29092 0cnfn 29144 0lnfn 29149 lnopunilem2 29175 xrge0tsmsd 30090 qqh0 30333 qqhcn 30340 eulerpartlemgs2 30747 sgnneg 30907 breprexpnat 31017 hgt750lem2 31035 subfacp1lem6 31470 sinccvglem 31869 abs2sqle 31877 abs2sqlt 31878 tan2h 33710 poimirlem16 33734 poimirlem19 33737 poimirlem31 33749 mblfinlem2 33756 ovoliunnfl 33760 voliunnfl 33762 dvtanlem 33768 ftc1anclem5 33798 cntotbnd 33904 flcidc 38242 dvconstbi 39031 expgrowth 39032 dvradcnv2 39044 binomcxplemdvbinom 39050 binomcxplemnotnn0 39053 xralrple3 40084 negcncfg 40593 ioodvbdlimc1 40647 ioodvbdlimc2 40649 itgsinexplem1 40668 stoweidlem26 40742 stoweidlem36 40752 stoweidlem55 40771 stirlinglem8 40797 fourierdlem103 40925 sqwvfoura 40944 sqwvfourb 40945 ovn0lem 41281 nn0sumshdiglemA 42919 nn0sumshdiglemB 42920 nn0sumshdiglem1 42921 sec0 43010 |
Copyright terms: Public domain | W3C validator |