![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0cld | Structured version Visualization version GIF version |
Description: The empty set is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 4-Oct-2006.) |
Ref | Expression |
---|---|
0cld | ⊢ (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dif0 4081 | . . 3 ⊢ (∪ 𝐽 ∖ ∅) = ∪ 𝐽 | |
2 | 1 | topopn 20884 | . 2 ⊢ (𝐽 ∈ Top → (∪ 𝐽 ∖ ∅) ∈ 𝐽) |
3 | 0ss 4103 | . . 3 ⊢ ∅ ⊆ ∪ 𝐽 | |
4 | eqid 2748 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
5 | 4 | iscld2 21005 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∅ ⊆ ∪ 𝐽) → (∅ ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ ∅) ∈ 𝐽)) |
6 | 3, 5 | mpan2 709 | . 2 ⊢ (𝐽 ∈ Top → (∅ ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ ∅) ∈ 𝐽)) |
7 | 2, 6 | mpbird 247 | 1 ⊢ (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∈ wcel 2127 ∖ cdif 3700 ⊆ wss 3703 ∅c0 4046 ∪ cuni 4576 ‘cfv 6037 Topctop 20871 Clsdccld 20993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ral 3043 df-rex 3044 df-rab 3047 df-v 3330 df-sbc 3565 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-iota 6000 df-fun 6039 df-fv 6045 df-top 20872 df-cld 20996 |
This theorem is referenced by: cls0 21057 indiscld 21068 iscldtop 21072 iccordt 21191 isconn2 21390 tgptsmscld 22126 mblfinlem2 33729 mblfinlem3 33730 ismblfin 33732 |
Copyright terms: Public domain | W3C validator |