![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 00ply1bas | Structured version Visualization version GIF version |
Description: Lemma for ply1basfvi 19734 and deg1fvi 23965. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
00ply1bas | ⊢ ∅ = (Base‘(Poly1‘∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4027 | . . 3 ⊢ ¬ 𝑎 ∈ ∅ | |
2 | noel 4027 | . . . 4 ⊢ ¬ (𝑎‘(1𝑜 × {0})) ∈ ∅ | |
3 | eqid 2724 | . . . . . 6 ⊢ (Poly1‘∅) = (Poly1‘∅) | |
4 | eqid 2724 | . . . . . 6 ⊢ (Base‘(Poly1‘∅)) = (Base‘(Poly1‘∅)) | |
5 | base0 16035 | . . . . . 6 ⊢ ∅ = (Base‘∅) | |
6 | 3, 4, 5 | ply1basf 19695 | . . . . 5 ⊢ (𝑎 ∈ (Base‘(Poly1‘∅)) → 𝑎:(ℕ0 ↑𝑚 1𝑜)⟶∅) |
7 | 0nn0 11420 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
8 | 7 | fconst6 6208 | . . . . . 6 ⊢ (1𝑜 × {0}):1𝑜⟶ℕ0 |
9 | nn0ex 11411 | . . . . . . 7 ⊢ ℕ0 ∈ V | |
10 | 1on 7687 | . . . . . . . 8 ⊢ 1𝑜 ∈ On | |
11 | 10 | elexi 3317 | . . . . . . 7 ⊢ 1𝑜 ∈ V |
12 | 9, 11 | elmap 8003 | . . . . . 6 ⊢ ((1𝑜 × {0}) ∈ (ℕ0 ↑𝑚 1𝑜) ↔ (1𝑜 × {0}):1𝑜⟶ℕ0) |
13 | 8, 12 | mpbir 221 | . . . . 5 ⊢ (1𝑜 × {0}) ∈ (ℕ0 ↑𝑚 1𝑜) |
14 | ffvelrn 6472 | . . . . 5 ⊢ ((𝑎:(ℕ0 ↑𝑚 1𝑜)⟶∅ ∧ (1𝑜 × {0}) ∈ (ℕ0 ↑𝑚 1𝑜)) → (𝑎‘(1𝑜 × {0})) ∈ ∅) | |
15 | 6, 13, 14 | sylancl 697 | . . . 4 ⊢ (𝑎 ∈ (Base‘(Poly1‘∅)) → (𝑎‘(1𝑜 × {0})) ∈ ∅) |
16 | 2, 15 | mto 188 | . . 3 ⊢ ¬ 𝑎 ∈ (Base‘(Poly1‘∅)) |
17 | 1, 16 | 2false 364 | . 2 ⊢ (𝑎 ∈ ∅ ↔ 𝑎 ∈ (Base‘(Poly1‘∅))) |
18 | 17 | eqriv 2721 | 1 ⊢ ∅ = (Base‘(Poly1‘∅)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1596 ∈ wcel 2103 ∅c0 4023 {csn 4285 × cxp 5216 Oncon0 5836 ⟶wf 5997 ‘cfv 6001 (class class class)co 6765 1𝑜c1o 7673 ↑𝑚 cmap 7974 0cc0 10049 ℕ0cn0 11405 Basecbs 15980 Poly1cpl1 19670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-of 7014 df-om 7183 df-1st 7285 df-2nd 7286 df-supp 7416 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-1o 7680 df-oadd 7684 df-er 7862 df-map 7976 df-en 8073 df-dom 8074 df-sdom 8075 df-fin 8076 df-fsupp 8392 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-nn 11134 df-2 11192 df-3 11193 df-4 11194 df-5 11195 df-6 11196 df-7 11197 df-8 11198 df-9 11199 df-n0 11406 df-z 11491 df-dec 11607 df-uz 11801 df-fz 12441 df-struct 15982 df-ndx 15983 df-slot 15984 df-base 15986 df-sets 15987 df-ress 15988 df-plusg 16077 df-mulr 16078 df-sca 16080 df-vsca 16081 df-tset 16083 df-ple 16084 df-psr 19479 df-mpl 19481 df-opsr 19483 df-psr1 19673 df-ply1 19675 |
This theorem is referenced by: ply1basfvi 19734 deg1fvi 23965 |
Copyright terms: Public domain | W3C validator |