![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 00lss | Structured version Visualization version GIF version |
Description: The empty structure has no subspaces (for use with fvco4i 6438). (Contributed by Stefan O'Rear, 31-Mar-2015.) |
Ref | Expression |
---|---|
00lss | ⊢ ∅ = (LSubSp‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4062 | . . 3 ⊢ ¬ 𝑎 ∈ ∅ | |
2 | base0 16114 | . . . . . 6 ⊢ ∅ = (Base‘∅) | |
3 | eqid 2760 | . . . . . 6 ⊢ (LSubSp‘∅) = (LSubSp‘∅) | |
4 | 2, 3 | lssss 19139 | . . . . 5 ⊢ (𝑎 ∈ (LSubSp‘∅) → 𝑎 ⊆ ∅) |
5 | ss0 4117 | . . . . 5 ⊢ (𝑎 ⊆ ∅ → 𝑎 = ∅) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝑎 ∈ (LSubSp‘∅) → 𝑎 = ∅) |
7 | 3 | lssn0 19143 | . . . . 5 ⊢ (𝑎 ∈ (LSubSp‘∅) → 𝑎 ≠ ∅) |
8 | 7 | neneqd 2937 | . . . 4 ⊢ (𝑎 ∈ (LSubSp‘∅) → ¬ 𝑎 = ∅) |
9 | 6, 8 | pm2.65i 185 | . . 3 ⊢ ¬ 𝑎 ∈ (LSubSp‘∅) |
10 | 1, 9 | 2false 364 | . 2 ⊢ (𝑎 ∈ ∅ ↔ 𝑎 ∈ (LSubSp‘∅)) |
11 | 10 | eqriv 2757 | 1 ⊢ ∅ = (LSubSp‘∅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2139 ⊆ wss 3715 ∅c0 4058 ‘cfv 6049 LSubSpclss 19134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-iota 6012 df-fun 6051 df-fv 6057 df-ov 6816 df-slot 16063 df-base 16065 df-lss 19135 |
This theorem is referenced by: 00lsp 19183 lidlval 19394 |
Copyright terms: Public domain | W3C validator |