
Metamath
A Computer Language for Pure Mathematics

Norman Megill

∼ Public Domain ∼

This book has been released into the Public Domain by Norman Megill on
March 10, 2007, per the Creative Commons Public Domain Dedication

(http://creativecommons.org/licenses/publicdomain/). The public
domain release applies worldwide. In case this is not legally possible, the
right is granted to use the work for any purpose, without any conditions,

unless such conditions are required by law.

Several short, attributed quotations from copyrighted works appear in this
book under the “fair use” provision of Section 107 of the United States
Copyright Act (Title 17 of the United States Code). The public-domain

status of this book is not applicable to those quotations.

Any trademarks used in this book are the property of their owners.

ISBN: 978-1-4116-3724-5

Lulu Press
Morrisville, North Carolina

USA

Norman Megill
19 Locke Lane, Lexington, MA 02420

E-mail address: nm@alum.mit.edu
http://metamath.org

http://creativecommons.org/licenses/publicdomain/
http://metamath.org

Contents

Preface . vii

1 Introduction 1
1.1 Mathematics as a Computer Language 4

1.1.1 Is Mathematics “User-Friendly”? 4
1.1.2 Mathematics and the Non-Specialist 12
1.1.3 An Impossible Dream? 14
1.1.4 Beauty . 15
1.1.5 Simplicity . 16
1.1.6 Rigor . 18

1.2 Computers and Mathematicians 20
1.2.1 Trusting the Computer 21
1.2.2 Trusting the Mathematician 22

1.3 The Use of Computers in Mathematics 24
1.3.1 Computer Algebra Systems 24
1.3.2 Automated Theorem Provers 25
1.3.3 Proof Verifiers . 27

1.4 Mathematics and Metamath 29
1.4.1 Standard Mathematics 29
1.4.2 Other Formal Systems 29
1.4.3 Metamath and Its Philosophy 30
1.4.4 A History of the Approach Behind Metamath 30
1.4.5 Metamath and First-Order Logic 31

2 Using the Metamath Program 33
2.1 Installation . 33
2.2 Your First Formal System . 34

2.2.1 From Nothing to Zero 34
2.2.2 Converting It to Metamath 36

2.3 A Trial Run . 40
2.3.1 Some Hints for Using the Command Line Interface . . 45

2.4 Your First Proof . 46
2.5 A Note About Editing a Database File 53

iii

iv CONTENTS

3 Abstract Mathematics Revealed 55
3.1 Logic and Set Theory . 55
3.2 The Axioms for All of Mathematics 58

3.2.1 Propositional Calculus 58
3.2.2 Predicate Calculus . 59
3.2.3 Equality . 61
3.2.4 Set Theory . 61

3.3 The Axioms in the Metamath Language 63
3.3.1 Propositional Calculus 64
3.3.2 Pure Predicate Calculus 64
3.3.3 Equality and Substitution 64
3.3.4 Set Theory . 65
3.3.5 That’s It . 66

3.4 A Hierarchy of Definitions . 66
3.4.1 Definitions for Propositional Calculus 68
3.4.2 Definitions for Predicate Calculus 69
3.4.3 Definitions for Set Theory 70

3.5 Tricks of the Trade . 76
3.6 A Theorem Sampler . 78
3.7 Axioms for Real and Complex Numbers 80
3.8 Exploring the Set Theory Database 83

3.8.1 A Note on “Compact” Proof Format 89

4 The Metamath Language 91
4.1 Specification of the Metamath Language 92

4.1.1 Preliminaries . 92
4.1.2 Preprocessing . 93
4.1.3 Basic Syntax . 93
4.1.4 Proof Verification . 95

4.2 The Basic Keywords . 96
4.2.1 User-Defined Tokens 97
4.2.2 Constants and Variables 99
4.2.3 The $c and $v Declaration Statements 99
4.2.4 The $d Statement . 100
4.2.5 The $f and $e Statements 105
4.2.6 Assertions ($a and $p Statements) 106
4.2.7 Frames . 108
4.2.8 Scoping Statements (${ and $}) 112

4.3 The Anatomy of a Proof . 114
4.3.1 The Concept of Unification 118

4.4 Extensions to the Metamath Language 119
4.4.1 Comments in the Metamath Language 119
4.4.2 Comment Markup Notation for HTML 121
4.4.3 Including Other Files in a Metamath Source File . . . 122
4.4.4 Compressed Proof Format 123

CONTENTS v

4.4.5 Specifying Unknown Proofs or Subproofs 124
4.5 Appendix: Axioms vs. Definitions 125

5 The Metamath Program 129
5.1 Invoking Metamath . 129
5.2 Controlling Metamath . 130

5.2.1 exit Command . 131
5.2.2 open log Command 131
5.2.3 close log Command 132
5.2.4 submit Command . 132
5.2.5 erase Command . 132
5.2.6 set echo Command 132
5.2.7 set scroll Command 132
5.2.8 set width Command 132
5.2.9 set height Command 133
5.2.10 beep Command . 133
5.2.11 more Command . 133
5.2.12 Operating System Commands 133
5.2.13 Size Limitations in Metamath 134

5.3 Reading and Writing Files . 134
5.3.1 read Command . 134
5.3.2 write source Command 134

5.4 Showing Status and Statements 135
5.4.1 show settings Command 135
5.4.2 show memory Command 135
5.4.3 show labels Command 135
5.4.4 show statement Command 135
5.4.5 search Command . 136

5.5 Displaying and Verifying Proofs 136
5.5.1 show proof Command 136
5.5.2 show usage Command 137
5.5.3 show trace back Command 138
5.5.4 verify proof Command 138
5.5.5 save proof Command 138

5.6 Creating Proofs . 139
5.6.1 prove Command . 141
5.6.2 set unification timeout Command 141
5.6.3 set empty substitution Command 142
5.6.4 set search limit Command 142
5.6.5 show new proof Command 142
5.6.6 assign Command . 143
5.6.7 match Command . 143
5.6.8 let Command . 143
5.6.9 unify Command . 144
5.6.10 initialize Command 145

vi CONTENTS

5.6.11 delete Command . 145
5.6.12 improve Command . 145
5.6.13 save new proof Command 146

5.7 Creating LATEX Output . 147
5.7.1 open tex Command 147
5.7.2 close tex Command 147

5.8 Creating HTML Output . 148
5.8.1 The Typesetting Comment ($t) 148
5.8.2 write theorem list Command 150
5.8.3 write bibliography Command 151
5.8.4 write recent additions Command 151

5.9 Text File Utilities . 151
5.9.1 tools Command . 151
5.9.2 help Command (in tools) 152
5.9.3 Using tools to Build Metamath submit Scripts . . . 152
5.9.4 Example of a tools Session 153

A Math Symbol Tokens for Set Theory 155

B Compressed Proofs 159

C Metamath’s Formal System 161
C.1 Introduction . 161
C.2 The Formal Description . 162

C.2.1 Preliminaries . 162
C.2.2 Constants, Variables, and Expressions 162
C.2.3 Substitution . 163
C.2.4 Statements . 163
C.2.5 Formal Systems . 165

C.3 Examples of Formal Systems 166
C.3.1 Example 1—Propositional Calculus 166
C.3.2 Example 2—Predicate Calculus with Equality 168
C.3.3 Free Variables and Proper Substitution 170
C.3.4 Metalogical Completeness 170
C.3.5 Example 3—Metalogically Complete Predicate Calcu-

lus with Equality . 171
C.3.6 Example 4—Adding Definitions 172
C.3.7 Example 5—ZFC Set Theory 173
C.3.8 Example 6—Class Notation in Set Theory 174

C.4 Metamath as a Formal System 175

D The MIU System 177

Bibliography 181

CONTENTS vii

Index 187

viii CONTENTS

Preface

Overview

Metamath is a computer language and an associated computer program
for archiving, verifying, and studying mathematical proofs at a very de-
tailed level. The Metamath language incorporates no mathematics per se
but treats all mathematical statements as mere sequences of symbols. You
provide Metamath with certain special sequences (axioms) that tell it what
rules of inference are allowed. Metamath is not limited to any specific field of
mathematics. The Metamath language is simple and robust, with an almost
total absence of hard-wired syntax, and I believe that it provides about the
simplest possible framework that allows essentially all of mathematics to be
expressed with absolute rigor.

Using the Metamath language, you can build formal or mathematical
systems1 that involve inferences from axioms. Although a database is pro-
vided that includes a recommended set of axioms for standard mathematics,
if you wish you can supply your own symbols, syntax, axioms, rules, and
definitions.

The name “Metamath” was chosen to suggest that the language provides
a means for describing mathematics rather than being the mathematics itself.
Actually in some sense any mathematical language is metamathematical.
Symbols written on paper, or stored in a computer, are not mathematics
itself but rather a way of expressing mathematics. For example “7” and
“VII” are symbols for denoting the number seven in Arabic and Roman
numerals; neither is the number seven.

If you are able to understand and write computer programs, you should
be able to follow abstract mathematics with the aid of Metamath. Used
in conjunction with standard textbooks, Metamath can guide you step-by-
step towards an understanding of abstract mathematics from a very rigorous

1A formal or mathematical system consists of a collection of symbols (such as 2, 4,
+ and =), syntax rules that describe how symbols may be combined to form a legal
expression (called a well-formed formula or wff, pronounced “whiff”), some starting wffs
called axioms, and inference rules that describe how theorems may be derived (proved)
from the axioms. A theorem is a mathematical fact such as 2 + 2 = 4. Strictly speaking,
even an obvious fact such as this must be proved from axioms to be formally acceptable
to a mathematician.

ix

x PREFACE

viewpoint, even if you have no formal abstract mathematics background. By
using a single, consistent notation to express proofs, once you grasp its basic
concepts Metamath provides you with the ability to immediately follow and
dissect proofs even in totally unfamiliar areas.

Of course, just being able follow a proof will not necessarily give you an
intuitive familiarity with mathematics. Memorizing the rules of chess does
not give you the ability to appreciate the game of a master, and knowing
how the notes on a musical score map to piano keys does not give you the
ability to hear in your head how it would sound. But each of these can be
a first step.

Metamath allows you to explore proofs in the sense that you can see the
theorem referenced at any step expanded in as much detail as you want,
right down to the underlying axioms of logic and set theory (in the case of
the set theory database provided). While Metamath will not replace the
higher-level understanding that can only be acquired through exercises and
hard work, being able to see how gaps in a proof are filled in can give you
increased confidence that can speed up the learning process and save you
time when you get stuck.

The Metamath language breaks down a mathematical proof into its tini-
est possible parts. These can be pieced together, like interlocking pieces
in a puzzle, only in a way that produces correct and absolutely rigorous
mathematics.

The nature of Metamath enforces very precise mathematical thinking,
similar to that involved in writing a computer program. A crucial difference,
though, is that once a proof is verified (by the Metamath program) to be
correct, it is definitely correct; it can never have a hidden “bug.” After
getting used to the kind of rigor and accuracy provided by Metamath, you
might even be tempted to adopt the attitude that a proof should never
be considered correct until it has been verified by a computer, just as you
would not completely trust a manual calculation until you have verified it
on a calculator.

My goal for Metamath was a system for describing and verifying math-
ematics that is completely universal yet conceptually as simple as possible.
In approaching mathematics from an axiomatic, formal viewpoint, I wanted
Metamath to be able to handle almost any mathematical system, not nec-
essarily with ease, but at least in principle and hopefully in practice. I
wanted it to verify proofs with absolute rigor, and for this reason Metamath
is what might be thought of as a “compile-only” language rather than an
algorithmic or Turing-machine language (Pascal, C, Prolog, Mathematica,
etc.). In other words, a “program” (database) written in the Metamath
language doesn’t “do” anything; it merely exhibits mathematical knowledge
and permits this knowledge to be verified as being correct. A program in
an algorithmic language can potentially have hidden bugs as well as pos-
sibly being hard to understand. But each token in a Metamath database

PREFACE xi

must be consistent with the database’s earlier contents according to simple,
fixed rules, and if a database is syntactically correct,2 then the mathemat-
ical content is correct with absolute certainty (or at least to the certainty
of the verification program, which is relatively simple). The only “bugs”
that can exist are in the statement of the axioms, for example if the ax-
ioms are inconsistent (a famous problem shown to be unsolvable by Gödel’s
incompleteness theorem).

Metamath doesn’t prove theorems automatically but is designed to ver-
ify proofs that you supply to it. Metamath is completely general and has
no built-in, preconceived notions about your formal system, its logic or its
syntax, but the price for its generality is that it does not lend itself well
to automated proofs in its most general form. (In principle it could accept
translated proofs from other, more specific theorem proving programs, al-
though nothing along those lines has been done so far.) For constructing
proofs, the Metamath program has a Proof Assistant which helps you fill in
some of a proof step’s details, shows you what choices you have at any step,
and verifies the proof as you build it; but you are still expected to provide
the proof.

Like most computer languages, the Metamath language uses the standard
(ascii) characters on a computer keyboard, so it cannot directly represent
many of the special symbols that mathematicians use. A useful feature of
the Metamath program is its ability to convert its notation into the LATEX
typesetting language. This feature lets you convert the ascii tokens you’ve
defined into standard mathematical symbols, so you end up with symbols
and formulas you are familiar with instead of somewhat cryptic ascii rep-
resentations of them.

Metamath is probably conceptually different from anything you’ve seen
before and some aspects may take some getting used to. This book will help
you decide whether Metamath suits your specific needs.

Setting Your Expectations

It is important for you to understand what Metamath is and is not. As men-
tioned, Metamath is not an automated theorem prover but rather a proof
verifier. Developing a database can be tedious, hard work, especially if you
want to make the proofs as short as possible, but it becomes easier as you
build up a collection of useful theorems. The purpose of Metamath is sim-
ply to document existing mathematics in an absolutely rigorous, computer-
verifiable way, not to aid directly in the creation of new mathematics. It
also is not a magic solution for learning abstract mathematics, although it
may be helpful to be able to actually see the implied rigor behind what you
are learning from textbooks, as well as providing hints to work out proofs
that you are stumped on.

2Here the notion of verifying correctness of syntax includes verification that a sequen-
tial list of proof steps results in the specified theorem.

xii PREFACE

As of this writing, a sizable set theory database has been developed to
provide a foundation for many fields of mathematics, but much more work
would be required to develop useful databases for specific fields.

Metamath “knows no math;” it just provides a framework in which to
express mathematics. Its language is very small. You can define two kinds
of symbols, constants and variables. The only thing Metamath knows how
to do is to substitute strings of symbols for the variables in an expression
based on instructions you provide it in a proof, subject to certain constraints
you specify for the variables. Even the decimal representation of a number
is merely a string of certain constants (digits) which together, in a specific
context, correspond to whatever mathematical object you choose to define
for it; unlike other computer languages, there is no actual number stored
inside the computer. In a proof, you in effect instruct Metamath what
symbol substitutions to make in previous axioms or theorems and join a
sequence of them together to result in the desired theorem. This kind of
symbol manipulation captures the essence of mathematics at a preaxiomatic
level.

Metamath and Mathematical Literature

In advanced mathematical literature, proofs are usually presented in the
form of short outlines that often only an expert can follow. This is partly out
of a desire for brevity, but it would also be unwise (even if it were practical)
to present proofs in complete formal detail, since the overall picture would
be lost.

A solution I envision that would allow mathematics to remain acceptable
to the expert, yet increase its accessibility to non-specialists, consists of a
combination of the traditional short, informal proof in print accompanied
by a complete formal proof stored in a computer database. In an analogy
with a computer program, the informal proof is like a set of comments that
describe the overall reasoning and content of the proof, whereas the com-
puter database is like the actual program and provides a means for anyone,
even a non-expert, to follow the proof in as much detail as desired, exploring
it back through layers of theorems (like subroutines that call other subrou-
tines) all the way back to the axioms of the theory. In addition, the computer
database would have the advantage of providing absolute assurance that the
proof is correct, since each step can be verified automatically.

There are several other approaches besides Metamath to a project such
as this. Section 1.3.3 discusses some of these.

To me, a noble goal would be a cd rom with hundreds of thousands of
theorems and their computer-verifiable proofs, encompassing a significant
fraction of known mathematics and available for instant access. Whether or
not Metamath is an appropriate choice remains to be seen, but in principle
I believe it is sufficient.

PREFACE xiii

Formalism

Over the past fifty years, a group of French mathematicians working collec-
tively under the pseudonym of Bourbaki have co-authored a series of mono-
graphs that attempt to rigorously and consistently formalize large bodies of
mathematics from foundations. On the one hand, certainly such an effort
has its merits; on the other hand, the Bourbaki project has been criticized
for its “scholasticism” and “hyperaxiomatics” that hide the intuitive steps
that lead to the results [3, p. 191].

Metamath unabashedly carries this philosophy to its extreme and no
doubt is subject to the same kind of criticism. Nonetheless I think that in
conjunction with conventional approaches to mathematics Metamath can
serve a useful purpose. The Bourbaki approach is essentially pedagogic, re-
quiring the reader to become intimately familiar with each detail in a very
large hierarchy before he or she can proceed to the next step. The differ-
ence with Metamath is that the “reader” (user) knows that all details are
contained in its computer database, available as needed; it does not demand
that the user know everything but conveniently makes available those por-
tions that are of interest. As the body of all mathematical knowledge grows
larger and larger, no one individual can have a thorough grasp of its entirety.
Metamath can finalize and put to rest any questions about the validity of
any part of it and can make any part of it accessible, in principle, to a
non-specialist.

A Personal Note

Why did I develop Metamath? I enjoy abstract mathematics, but I some-
times get lost in a barrage of definitions and start to lose confidence that
my proofs are correct. Or I reach a point where I lose sight of how anything
I’m doing relates to the axioms that a theory is based on and am sometimes
suspicious that there may be some overlooked implicit axiom accidentally in-
troduced along the way (as happened historically with Euclidean geometry,
whose omission of Pasch’s axiom went unnoticed for 2000 years [13, p. 160]!).
I’m also somewhat lazy and wish to avoid the effort involved in re-verifying
the gaps in informal proofs “left to the reader;” I prefer to figure them out
just once and not have to go through the same frustration a year from now
when I’ve forgotten what I did. Metamath provides better recovery of my
efforts than scraps of paper that I can’t decipher anymore. But mostly I
find very appealing the idea of rigorously archiving mathematical knowledge
in a computer database, providing precision, certainty, and elimination of
human error.

Note on Bibliography and Index

The Bibliography usually includes the Library of Congress classification for
a work to make it easier for you to find it in on a university library shelf.

xiv PREFACE

The Index has author references to pages where their works are cited, even
though the authors’ names may not appear on those pages.

Acknowledgments

Acknowledgments are first due to my wife, Deborah (who passed away on
September 4, 1998), for critiquing the manuscript but most of all for her
patience and support. I also wish to thank Joe Wright, Richard Becker,
Clarke Evans, Buddha Buck, and Jeremy Henty for helpful comments. Any
errors, omissions, and other shortcomings are of course my responsibility.

Note Added June 22, 2005

The original, unpublished version of this book was written in 1997 and
distributed via the web. The present edition has been updated to reflect
the current Metamath program and databases, as well as more current urls
for Internet sites. Thanks to Josh Purinton, One Hand Clapping, Mel L.
O’Cat, and Roy F. Longton for pointing out typographical and other errors.
I have also benefitted from numerous discussions with Raph Levien, who
has extended Metamath’s philosophy of rigor to result in his Ghilbert proof
language (http://ghilbert.org).

Robert (Bob) Solovay communicated a new result of A. R. D. Mathias on
the system of Bourbaki, and the text has been updated accordingly (p. 15).

Bob also pointed out a clarification of the literature regarding category
theory and inaccessible cardinals (p. 31), and a misleading statement was
removed from the text. Specifically, contrary to a statement in previous
editions, it is possible to express “There is a proper class of inaccessible
cardinals” in the language of ZFC. This can be done as follows: “For every
set x there is an inaccessible cardinal κ such that κ is not in x.” Bob writes:3

This axiom is how Grothendieck presents category theory.
To each inaccessible cardinal κ one associates a Grothendieck
universe U(κ). U(κ) consists of those sets which lie in a tran-
sitive set of cardinality less than κ. Instead of the “category
of all groups,” one works relative to a universe [considering the
category of groups of cardinality less than κ]. Now the category
whose objects are all categories “relative” to the universe U(κ)”
will be a category not relative to this universe but to the next
universe.

All of the things category theorists like to do can be done
in this framework. The only controversial point is whether the
Grothendieck axiom is too strong for the needs of category theo-
rists. Mac Lane argues that “one universe is enough” and Fefer-
man has argued that one can get by with ordinary ZFC. I don’t

3Private communication, Nov. 30, 2002.

http://ghilbert.org

PREFACE xv

find Feferman’s arguments persuasive. Mac Lane may be right,
but when I think about category theory I do it à la Grothendieck.

By the way Mizar adds the axiom “there is a proper class of
inaccessibles” precisely so as to do category theory.

The most current information on the Metamath program and databases
can always be found at http://metamath.org.

Note Added June 24, 2006

The Metamath spec was restricted slightly to make parsers easier to write.
See the footnote on p. 94.

Note Added March 10, 2007

I am grateful to Anthony Williams for writing the LATEX package called
realref.sty and contributing it to the public domain. This package allows
the internal hyperlinks in a pdf file to anchor to specific page numbers
instead of just section titles, making the navigation of the pdf file for this
book much more pleasant and “logical.”

A typographical error found by Martin Kiselkov was corrected. A con-
fusing remark about unification was deleted per suggestion of Mel O’Cat.

Note Added May 27, 2009

Several typos found by Kim Sparre were corrected. A note was added that
the Poincaré conjecture has been proved (p. 24).

Note Added Nov. 17, 2014

The statement of the Schröder-Bernstein theorem was corrected in Sec-
tion 1.2.2. Thanks to Bob Solovay for pointing out the error.

Note Added May 25, 2016

Thanks to Jerry James for correcting 16 typos.

http://metamath.org

xvi PREFACE

Chapter 1

Introduction

I.M.: No, no. There’s nothing subjective about it! Everybody
knows what a proof is. Just read some books, take courses from
a competent mathematician, and you’ll catch on.

Student: Are you sure?
I.M.: Well—it is possible that you won’t, if you don’t have

any aptitude for it. That can happen, too.
Student: Then you decide what a proof is, and if I don’t learn

to decide in the same way, you decide I don’t have any aptitude.
I.M.: If not me, then who?

“The Ideal Mathematician” 1

In the past century, brilliant mathematicians have discovered almost
unimaginably profound results that rank among the crowning intellectual
achievements of mankind. However, there is a sense in which modern ab-
stract mathematics is behind the times, stuck in an era before comput-
ers existed. While no one disputes the remarkable results that have been
achieved, communicating these results in a precise way to the uninitiated
is virtually impossible. To describe these results, a terse informal language
is used which despite its elegance is very difficult to learn. This informal
language is not imprecise, far from it, but rather it often has omitted detail
and symbols with hidden context that are implicitly understood by an ex-
pert but few others. Extremely complex technical meanings are associated
with innocent-sounding English words such as “compact” and “measurable”
that barely hint at what is actually being said. Anyone who does not keep
the precise technical meaning constantly in mind is bound to fail, and ac-
quiring the ability to do this can be achieved only through much practice
and hard work. Only the few who complete the painful learning experience
can join the small in-group of pure mathematicians. The informal language

1[13], p. 40

1

2 CHAPTER 1. INTRODUCTION

effectively cuts off the true nature of their knowledge from most everyone
else.

Metamath makes abstract mathematics more concrete. It allows a com-
puter to keep track of the complexity associated with each word or symbol
with absolute rigor. You can explore this complexity at your leisure, to
whatever degree you desire. Whether or not you believe that concepts such
as infinity actually “exist” outside of the mind, Metamath lets you get to
the foundation for what’s really being said. Its language is simple enough
so that you don’t have to rely on the authority of experts but can verify the
results yourself, step by step. If you want to attempt to derive your own
results, Metamath will not let you make a mistake in reasoning.

“Metamath” is the name of a mathematical computer language that de-
scribes formal mathematical systems and expresses proofs of theorems in
those systems. Such a language is called a metalanguage by mathemati-
cians. “Metamath” is also the name of a computer program that verifies
proofs expressed in the language. The Metamath program does not have
the built-in ability to make logical inferences; it just makes a series of sym-
bol substitutions according to instructions given to it in a proof and verifies
that the result matches the expected theorem. It makes logical inferences
based only on rules of logic that are contained in a set of axioms, or first
principles, that you provide to it as the starting point for proofs.

The complete specification of the Metamath language is only four pages
long (Section 4.1, p. 92). Its simplicity may at first make you may wonder
how it can do much of anything at all. But in fact the kinds of symbol
manipulations it performs are the ones that are implicitly done in all math-
ematical systems at the lowest level. You can learn it relatively quickly and
have complete confidence in any mathematical proof that it verifies. On the
other hand, it is powerful and general enough so that virtually any mathe-
matical theory, from the most basic to the deeply abstract, can be described
with it.

Although in principle Metamath can be used with any kind of mathe-
matics, it is best suited for abstract or “pure” mathematics that is mostly
concerned with theorems and their proofs, as opposed to the kind of math-
ematics that deals with the practical manipulation of numbers. Examples
of branches of pure mathematics are logic,2 set theory,3 number theory,4

2Logic is the study of statements that are universally true regardless of the objects
being described by the statements. An example is the statement, “if P implies Q, then
either P is false or Q is true.”

3Set theory is the study of general-purpose mathematical objects called “sets,” and
from it essentially all of mathematics can be derived. For example, numbers can be
defined as specific sets, and their properties can be explored using the tools of set theory.

4Number theory deals with the properties of positive and negative integers (whole
numbers).

3

group theory,5 abstract algebra,6, analysis 7 and topology.8 Even in physics,
Metamath could be applied to certain branches that make use of abstract
mathematics, such as quantum logic (used to study aspects of quantum
mechanics).

On the other hand, Metamath is less suited to applications that deal
primarily with intensive numeric computations. Metamath does not have
any built-in representation of numbers; instead, a specific string of symbols
(digits) must be syntactically constructed as part of any proof in which an
ordinary number is used. For this reason, numbers in Metamath are best
limited to specific constants that arise during the course of a theorem or
its proof. Numbers are only a tiny part of the world of abstract mathe-
matics. The exclusion of built-in numbers was a conscious decision to help
achieve Metamath’s simplicity, and there are other software tools such as the
computer algebra programs macsyma, Mathematica, and Maple specifically
suited to handling numbers efficiently.

After learning Metamath’s basic statement types, any technically orient-
ed person, mathematician or not, can immediately trace any theorem proved
in the language as far back as he or she wants, all the way to the axioms
on which the theorem is based. This ability suggests a non-traditional way
of learning about pure mathematics. Used in conjunction with traditional
methods, Metamath could make pure mathematics accessible to people who
are not sufficiently skilled to figure out the implicit detail in ordinary text-
book proofs. Once you learn the axioms of a theory, you can have complete
confidence that everything you need to understand a proof you are studying
is all there, at your beck and call, allowing you to focus in on any proof
step you don’t understand in as much depth as you need, without worrying
about getting stuck on a step you can’t figure out.9

5Group theory studies the properties of mathematical objects called groups that obey
a simple set of axioms and have properties of symmetry that make them useful in many
other fields.

6Abstract algebra includes group theory and also studies groups with additional prop-
erties that qualify them as “rings” and “fields.” The set of real numbers is a familiar
example of a field.

7Analysis is the study of real and complex numbers.
8One area studied by topology are properties that remain unchanged when geometrical

objects undergo stretching deformations; for example a doughnut and a coffee cup each
have one hole (the cup’s hole is in its handle) and are thus considered topologically
equivalent. In general, though, topology is the study of abstract mathematical objects
that obey a certain (surprisingly simple) set of axioms. See, for example, Munkres [41].

9On the other hand, writing proofs in the Metamath language is challenging, requiring
a degree of rigor far in excess of that normally taught to students. In a classroom setting,
I doubt that writing Metamath proofs would ever replace traditional homework exercises
involving informal proofs, because the time needed to work out the details would not allow
a course to cover much material. For students who have trouble grasping the implied
rigor in traditional material, writing a few simple proofs in the Metamath language might
help clarify fuzzy thought processes. Although somewhat difficult at first, it eventually
becomes fun to do, like solving a puzzle, because of the instant feedback provided by the
computer.

4 CHAPTER 1. INTRODUCTION

Metamath is probably unlike anything you have encountered before. In
this first chapter we will look at the philosophy and use of computers in
mathematics in order to better understand the motivation behind Meta-
math. The material in this chapter is not required in order to use Meta-
math. You may skip it if you are impatient, but I hope you will find it
educational and enjoyable. If you want to start experimenting with the
Metamath program right away, proceed directly to Chapter 2 (p. 33). To
learn the Metamath language, skim Chapter 2 then proceed to Chapter 4
(p. 91).

1.1 Mathematics as a Computer Language

The study of mathematics is apt to commence in disappoint-
ment.. . .
We are told that by its aid the stars are weighted and the billions
of molecules in a drop of water are counted. Yet, like the ghost
of Hamlet’s father, this great science eludes the efforts of our
mental weapons to grasp it.

Alfred North Whitehead10

1.1.1 Is Mathematics “User-Friendly”?

Suppose you have no formal training in abstract mathematics. But popular
books you’ve read offer tempting glimpses of this world filled with profound
ideas that have stirred the human spirit. You are not satisfied with the
informal, watered-down descriptions you’ve read but feel it is important to
grasp the underlying mathematics itself to understand its true meaning.
It’s not practical to go back to school to learn it, though; you don’t want
to dedicate years of your life to it. There are many important things in life,
and you have to set priorities for what’s important to you. What would
happen if you tried to pursue it on your own, in your spare time?

After all, you were able to learn a computer programming language such
as Pascal on your own without too much difficulty, even though you had no
formal training in computers. You don’t claim to be an expert in software
design, but you can write a passable program when necessary to suit your
needs. Even more important, you know that you can look at anyone else’s
Pascal program, no matter how complex, and with enough patience figure
out exactly how it works, even though you are not a specialist. Pascal allows
you do anything that a computer can do, at least in principle. Thus you
know you have the ability, in principle, to follow anything that a computer
program can do: you just have to break it down into small enough pieces.

10[64], ch. 1

1.1. MATHEMATICS AS A COMPUTER LANGUAGE 5

Here’s an imaginary scenario of what might happen if you naively a-
dopted this same view of abstract mathematics and tried to pick it up on
your own, in a period of time comparable to, saying, learning a computer
programming language.

A Non-Mathematician’s Quest for Truth

. . . my daughters have been studying (chemistry) for several se-
mesters, think they have learned differential and integral calculus
in school, and yet even today don’t know why x · y = y ·x is true.

Edmund Landau11

Minus times minus is plus,
The reason for this we need not discuss.

W. H. Auden12

We’ll suppose you are technically oriented professional, perhaps an engi-
neer, a computer programmer, or a physicist, but probably not a mathemati-
cian. You consider yourself reasonably intelligent. You did well in school,
learning a variety of methods and techniques in practical mathematics such
as calculus and differential equations. But rarely did your courses get into
anything resembling modern abstract mathematics, and proofs were some-
thing that appeared only occasionally in your textbooks, a kind of necessary
evil that was supposed to convince you of a certain key result. Most of your
homework consisted of exercises that gave you practice in the techniques,
and you were hardly ever asked to come up with a proof of your own.

You find yourself curious about advanced, abstract mathematics. You
are driven by an inner conviction that it is important to understand and
appreciate some of the most profound knowledge discovered by mankind.
But it seems very hard to learn, something that only certain gifted longhairs
can access and understand. You are frustrated that it seems forever cut off
from you.

Eventually your curiosity drives you to do something about it. You set
for yourself a goal of “really” understanding mathematics: not just how to
manipulate equations in algebra or calculus according to cookbook rules,
but rather to gain a deep understanding of where those rules come from.
In fact, you’re not thinking about this kind of ordinary mathematics at
all, but about a much more abstract, ethereal realm of pure mathematics,
where famous results such as Gödel’s incompleteness theorem and Cantor’s
different kinds of infinities reside.

11[30], p. vi
12As quoted in [18], p. 64

6 CHAPTER 1. INTRODUCTION

You have probably read a number of popular books, with titles like
Infinity and the Mind [51], on topics such as these. You found them inspiring
but at the same time somewhat unsatisfactory. They gave you a general idea
of what these results are about, but if someone asked you to prove them,
you wouldn’t have the faintest idea of where to begin. Sure, you could give
the same overall outline that you learned from the popular books; and in a
general sort of way, you do have an understanding. But deep down inside,
you know that there is a rigor that is missing, that probably there are many
subtle steps and pitfalls along the way, and ultimately it seems you have to
place your trust in the experts in the field. You don’t like this; you want to
be able to verify these results for yourself.

So where do you go next? As a first step, you decide to look up some of
the original papers on the theorems you are curious about, or better, obtain
some standard textbooks in the field. You look up a theorem you want to
understand. Sure enough, it’s there, but it’s expressed with strange terms
and odd symbols that mean absolutely nothing to you. It might as well be
written in a foreign language you’ve never seen before, whose symbols are
totally alien. You look at the proof, and you haven’t the foggiest notion
what each step means, much less how one step follows from another. Well,
obviously you have a lot to learn if you want to understand this stuff.

You feel that you could probably understand it by going back to college
for another three to six years and getting a math degree. But that does not
fit in with your career and the other things in your life and would serve no
practical purpose. You decide to seek a quicker path. You figure you’ll just
trace your way back to the beginning, step by step, as you would do with a
computer program, until you understand it. But you quickly find that this
is not possible, since you can’t even understand enough to know what you
have to trace back to.

Maybe a different approach is in order—maybe you should start at the
beginning and work your way up. First, you read the introduction to the
book to find out what the prerequisites are. In a similar fashion, you trace
your way back through two or three more books, finally arriving at one that
seems to start at a beginning: it lists the axioms of arithmetic. “Aha!” you
naively think, “This must be the starting point, the source of all mathemat-
ical knowledge.” Or at least the starting point for mathematics dealing with
numbers; you have to start somewhere and have no idea what the starting
point for other mathematics would be. But the word “axioms” looks promis-
ing. So you eagerly read along and work through some elementary exercises
at the beginning of the book. You feel vaguely bothered: these don’t seem
like axioms at all, at least not in the sense that you want to think of axioms.
Axioms imply a starting point from which everything else can be built up,
according to precise rules specified in the axiom system. Even though you
can understand first few proofs in an informal way, and are able to do some
of the exercises, it’s hard to pin down precisely what the rules are. Sure,

1.1. MATHEMATICS AS A COMPUTER LANGUAGE 7

each step seems to follow logically from the others, but exactly what does
that mean? Is the “logic” just a matter of common sense, something vague
that we all understand but can never quite state precisely?

You’ve spent a number of years, off and on, programming computers,
and you know that in the case of computer languages there is no question of
what the rules are—they are precise and crystal clear. If you follow them,
your program will work, and if you don’t, it won’t. No matter how complex
a program, it can always be broken down into simpler and simpler pieces,
until you can ultimately identify the bits that are moved around to perform
a specific function. Some programs might require a lot of perseverance to
accomplish this, but if you focus on a specific portion of it, you don’t even
necessarily have to know how the rest of it works. Shouldn’t there be an
analogy in mathematics?

You decide to apply the ultimate test: you ask yourself how a computer
could verify or ensure that the steps in these proofs follow from one another.
Certainly mathematics must be at least as precisely defined as a computer
language, if not more so; after all, computer science itself is based on it. If
you can get a computer to verify these proofs, then you should also be able,
in principle, to understand them yourself in a very crystal clear, precise way.

You’re in for a surprise: you can conceive of no way to convert the
proofs, which are in English, to a form that the computer can understand.
The proofs are filled with phrases such as “assume there exists a unique
x. . . ” and “given any y, let z be the number such that. . . ” This isn’t the
kind of logic you are used to in computer programming, where everything,
even arithmetic, reduces to Boolean ones and zeroes if you care to break it
down sufficiently. Even though you think you understand the proofs, there
seems to be some kind of higher reasoning involved rather than precise rules
that define how you manipulate the symbols in the axioms. Whatever it
is, it just isn’t obvious how you would express it to a computer, and the
more you think about it, the more puzzled and confused you get, to the
point where you even wonder whether you really understand it. There’s a
lot more to these axioms of arithmetic than meets the eye.

Nobody ever talked about this in school in your applied math and en-
gineering courses. You just learned the rules they gave you, not quite un-
derstanding how or why they worked, sometimes vaguely suspicious or un-
certain of them, and through homework problems and osmosis learned how
to present solutions that satisfied the instructor and earned you an “A.”
Rarely did you actually “prove” anything in a rigorous way, and the math
majors who did do stuff like that seemed to be in a different world.

Of course, there are computer algebra programs that can do mathemat-
ics, and rather impressively. They can instantly solve the integrals that you
struggled with in freshman calculus, and do much, much more. But when
you look at these programs, what you see is a big collection of algorithms
and techniques that evolved and were added to over time, along with some

8 CHAPTER 1. INTRODUCTION

basic software that manipulates symbols. Each algorithm that is built in is
the result of someone’s theorem whose proof is omitted; you just have to
trust the person who proved it and the person who programmed it in and
hope there are no bugs. Somehow this doesn’t seem to be the essence of
mathematics. Although computer algebra systems can generate theorems
with amazing speed, they can’t actually prove a single one of them.

After some puzzlement, you revisit some popular books on what mathe-
matics is all about. Somewhere you read that all of mathematics is actually
derived from something called “set theory.” This is a little confusing, be-
cause no where in the book that presented the axioms of arithmetic was
there any mention of set theory, or if there was, it seemed to be just a tool
that helps you describe things better—the set of even numbers, that sort of
thing. If set theory is the basis for all mathematics, then why are additional
axioms needed for arithmetic?

Something is wrong but you’re not sure what. One of your friends is a
pure mathematician. He knows he is unable to communicate to you what
he does for a living and seems to have little interest in trying. You do know
that for him, proofs are what mathematics is all about. You ask him what a
proof is, and he essentially tells you that, while of course it’s based on logic,
really it’s something you learn by doing it over and over until you pick it
up. He refers you to a book, How to Read and Do Proofs [55]. Although
this book helps you understand traditional informal proofs, there is still
something missing you can’t seem to pin down yet.

You ask your friend how you would go about having a computer verify a
proof. At first he seems puzzled by the question; why would you want to do
that? Then he says it’s not something that would make any sense to do, but
he’s heard that you’d have to break the proof down into thousands or even
millions of individual steps to do such a thing, because the reasoning involved
is at such a high level of abstraction. He says that maybe it’s something you
could do up to a point, but the computer would be completely impractical
once you get into any meaningful mathematics. There, the only way you
can verify a proof is by hand, and you can only acquire the ability to do this
by specializing in the field for a couple of years in grad school. Anyway, he
thinks it all has to do with set theory, although he has never taken a formal
course in set theory but just learned what he needed as he went along.

You are intrigued and amazed. Apparently a mathematician can grasp
as a single concept something that would take a computer a thousand or
a million steps to verify, and have complete confidence in it. Each one of
these thousand or million steps must be absolutely correct, or else the whole
proof is meaningless. If you added a million numbers by hand, would you
trust the result? How do you really know that all these steps are correct,
that there isn’t some subtle pitfall in one of these million steps, like a bug
in a computer program? After all, you’ve read that famous mathematicians
have occasionally made mistakes, and you certainly know you’ve made your

1.1. MATHEMATICS AS A COMPUTER LANGUAGE 9

share on your math homework problems in school.
You recall the analogy with a computer program. Sure, you can under-

stand what a large computer program such as a word processor does, as a
single high-level concept or a small set of such concepts, but your ability
to understand it in no way ensures that the program is correct and doesn’t
have hidden bugs. Even if you wrote the program yourself you can’t really
know this; most large programs that you’ve written have had bugs that crop
up at some later date, no matter how careful you tried to be while writing
them.

OK, so now it seems the reason you can’t figure out how to make a
computer verify proofs is because each step really corresponds to a million
small steps. Well, you say, a computer can do a million calculations in a
second, so maybe it’s still practical to do. Now the puzzle becomes how
to figure out what the million steps are that each English-language step
corresponds to. Your mathematician friend hasn’t a clue, but suggests that
maybe you would find the answer by studying set theory. Actually, your
friend thinks you’re a little off the wall for even wondering such a thing. For
him, this is not what mathematics is all about.

The subject of set theory keeps popping up, so you decide it’s time to
look it up.

You decide to start off on a careful footing, so you start reading a couple
of very elementary books on set theory. A lot of it seems pretty obvious,
like intersections, subsets, and Venn diagrams. You thumb through one of
the books; nowhere is anything about axioms mentioned. The other book
relegates to an appendix a brief discussion that mentions a set of axioms
called “Zermelo-Fraenkel set theory” and states them in English. You look
at them and have no idea what they really mean or what you can do with
them. The comments in this appendix say that the purpose of mentioning
them is to expose you to the idea, but imply that they are not necessary for
basic understanding and that they are really the subject matter of advanced
treatments where fine points such as a certain paradox (Russell’s paradox13)
are resolved. Wait a minute—shouldn’t the axioms be a starting point, not
an ending point? If there are paradoxes that arise without the axioms,
how do you know you won’t stumble across one accidentally when using the
informal approach?

And nowhere do these books describe how “all of mathematics can be
derived from set theory” which by now you’ve heard a few times.

You find a more advanced book on set theory. This one actually lists
the axioms of ZF set theory in plain English on page one. Now you think
your quest has ended and you’ve finally found the source of all mathematical
knowledge; you just have to understand what it means. Here, in one place,

13Russell’s paradox assumes that there exists a set S that is a collection of all sets that
don’t contain themselves. Now, either S contains itself or it doesn’t. If it contains itself, it
contradicts its definition. But if it doesn’t contain itself, it also contradicts its definition.
Russell’s paradox is resolved in ZF set theory by denying that such a set S exists.

10 CHAPTER 1. INTRODUCTION

is the basis for all of mathematics! You stare at the axioms in awe, puzzle
over them, memorize them, hoping that if you just meditate on them long
enough they will become clear. Of course, you haven’t the slightest idea
how the rest of mathematics is “derived” from them; in particular, if these
are the axioms of mathematics, then why do arithmetic, group theory, and
so on need their own axioms?

You start reading this advanced book carefully, pondering the meaning
of every word, because by now you’re really determined to get to the bottom
of this. The first thing the book does is explain how the axioms came about,
which was to resolve Russell’s paradox. In fact that seems to be the main
purpose of their existence; that they supposedly can be used to derive all of
mathematics seems irrelevant and is not even mentioned. Well, you go on.
You hope the book will explain to you clearly, step by step, how to derive
things from the axioms. After all, this is the starting point of mathematics,
like a book that explains the basics of a computer programming language.
But something is missing. You find you can’t even understand the first
proof or do the first exercise. Symbols such as ∃ and ∀ permeate the page
without any mention of where they came from or how to manipulate them;
the author assumes you are totally familiar with them and doesn’t even tell
you what they mean. By now you know that ∃ means “there exists” and ∀
means “for all,” but shouldn’t the rules for manipulating these symbols be
part of the axioms? You still have no idea how you could even describe the
axioms to a computer.

Certainly there is something much different here from the technical lit-
erature you’re used to reading. A computer language manual almost always
explains very clearly what all the symbols mean, precisely what they do, and
the rules used for combining them, and you work your way up from there.

After glancing at four or five other such books, you come to the realiza-
tion that there is another whole field of study that you need just to get to
the point at which you can understand the axioms of set theory. The field is
called “logic.” In fact, some of the books did recommend it as a prerequisite,
but it just didn’t sink in. You assumed logic was, well, just logic, something
that a person with common sense intuitively understood. Why waste your
time reading boring treatises on symbolic logic, the manipulation of 1’s and
0’s that computers do, when you already know that? But this is a different
kind of logic, quite alien to you. The subject of nand and nor gates is not
even touched upon or in any case has to do with only a very small part of
this field.

So your quest continues. Skimming through the first couple of introduc-
tory books, you get a general idea of what logic is about and what quantifiers
(“for all,” “there exists”) mean, but you find their examples somewhat triv-
ial and mildly annoying (“all dogs are animals,” “some animals are dogs,”
and such). But all you want to know is what the rules are for manipulating
the symbols so you can apply them to set theory. Some formulas describing

1.1. MATHEMATICS AS A COMPUTER LANGUAGE 11

the relationships among quantifiers (∃ and ∀) are listed in tables, along with
some verbal reasoning to justify them. Presumably, if you want to find out
if a formula is correct, you go through this same kind of mental reasoning
process, possibly using images of dogs and animals. Intuitively, the formu-
las seem to make sense. But when you ask yourself, “What are the rules I
need to get a computer to figure out whether this formula is correct?”, you
still don’t know. Certainly you don’t ask the computer to imagine dogs and
animals.

You look at some more advanced logic books. Many of them have an
introductory chapter summarizing set theory, which turns out to be a pre-
requisite. You need logic to understand set theory, but it seems you also
need set theory to understand logic! These books jump right into prov-
ing rather advanced theorems about logic, without offering the faintest clue
about where the logic came from that allows them to prove these theorems.

Luckily, you come across an elementary book of logic that, halfway
through, after the usual truth tables and metaphors, presents in a clear,
precise way what you’ve been looking for all along: the axioms! They’re di-
vided into propositional calculus (also called sentential logic) and predicate
calculus (also called first-order logic), with rules so simple and crystal clear
that now you can finally program a computer to understand them. Indeed,
they’re no harder than learning how to play a game of chess. As far as what
you seem to need is concerned, the whole book could have been written in
five pages!

Now you think you’ve found the ultimate source of mathematical truth.
So—the axioms of mathematics consist of these axioms of logic, together
with the axioms of ZF set theory. (By now you’ve also been able to figure
out how to translate the ZF axioms from English into the actual symbols of
logic which you can now manipulate according to precise, easy-to-understand
rules.)

Of course, you still don’t understand how “all of mathematics can be
derived from set theory,” but maybe this will reveal itself in due course.

You eagerly set out to program the axioms and rules into a computer and
start to look at the theorems you will have to prove as the logic is developed.
All sorts of important theorems start popping up: the deduction theorem,
the substitution theorem, the completeness theorem of propositional calcu-
lus, the completeness theorem of predicate calculus. Uh-oh, there seems to
be trouble. They all get harder and harder, and not one of them can be
derived with the axioms and rules of logic you’ve just been handed. Instead,
they all require “metalogic” for their proofs, a kind of mixture of logic and
set theory that allows you to prove things about the axioms and theorems
of logic rather than with them.

You plow ahead anyway. A month later, you’ve spent much of your
free time getting the computer to verify proofs in propositional calculus.
You’ve programmed in the axioms, but you’ve also had to program in the

12 CHAPTER 1. INTRODUCTION

deduction theorem, the substitution theorem, and the completeness theorem
of propositional calculus, which by now you’ve resigned yourself to treating
as rather complex additional axioms, since they can’t be proved from the
axioms you were given. You can now get the computer to verify and even
generate complete, rigorous, formal proofs. Never mind that they may have
100,000 steps—at least now you can have complete, absolute confidence in
them. Unfortunately, the only theorems you have proved are pretty trivial
and you can easily verify them in a few minutes with truth tables, if not by
inspection.

It looks like your mathematician friend was right. Getting the computer
to do serious mathematics with this kind of rigor seems almost hopeless.
Even worse, it seems that the further along you get, the more “axioms”
you have to add, as each new theorem seems to involve additional “meta-
mathematical” reasoning that hasn’t been formalized, and none of it can
be derived from the axioms of logic. Not only do the proofs keep growing
exponentially as you get further along, but the program to verify them keeps
getting bigger and bigger as you program in more “metatheorems.”14 The
bugs that have cropped up so far have already made you start to lose faith
in the rigor you seem to have achieved, and you know it’s just going to get
worse as your program gets larger.

1.1.2 Mathematics and the Non-Specialist

A real proof is not checkable by a machine, or even by any math-
ematician not privy to the gestalt, the mode of thought of the
particular field of mathematics in which the proof is located.

Davis and Hersh 15

The bulk of abstract or theoretical mathematics is ordinarily outside
the reach of anyone but a few specialists in each field who have completed
the necessary difficult internship in order to enter its coterie. The typical
intelligent layperson has no reasonable hope of understanding much of it,
nor even the specialist mathematician of understanding other fields. It is
like a foreign language that has no dictionary to look up the translation; the
only way you can learn it is by living in the country for a few years. It is
argued that the effort involved in learning a specialty is a necessary process

14A metatheorem is usually a statement that is too general to be directly provable in a
theory. For example, “if n1, n2, and n3 are integers, then n1 + n2 + n3 is an integer” is
a theorem of number theory. But “for any integer k > 1, if n1, . . . , nk are integers, then
n1 + . . . + nk is an integer” is a metatheorem, in other words a family of theorems, one
for every k. The reason it is not a theorem is that the general sum n1 + . . . + nk (as a
function of k) is not an operation that can be defined directly in number theory.

15[13], p. 354

1.1. MATHEMATICS AS A COMPUTER LANGUAGE 13

for acquiring a deep understanding. Of course, this is almost certainly true
if one is to make significant contributions to a field; in particular, “doing”
proofs is probably the most important part of a mathematician’s training.
But is it also necessary to deny outsiders access to it? Is it necessary that
abstract mathematics be so hard for a layperson to grasp?

A computer normally is of no help whatsoever. Most published proofs
are actually just series of hints written in an informal style that requires con-
siderable knowledge of the field to understand. These are the “real proofs”
referred to by Davis and Hersh. There is an implicit understanding that,
in principle, such a proof could be converted to a complete formal proof.
However, it is said that no one would ever attempt such a conversion, even
if they could, because that would presumably require millions of steps (Sec-
tion 1.1.3). Unfortunately the informal style automatically excludes the
understanding of the proof by anyone who hasn’t gone through the neces-
sary apprenticeship. The best that the intelligent layperson can do is to read
popular books about deep and famous results; while this can be helpful, it
can also be misleading, and the lack of detail usually leaves the reader with
no ability whatsoever to explore any aspect of the field being described.

The statements of theorems often use sophisticated notation that makes
them inaccessible to the non-specialist. For a non-specialist who wants to
achieve a deeper understanding of a proof, the process of tracing definitions
and lemmas back through their hierarchy quickly becomes confusing and
discouraging. Textbooks are usually written to train mathematicians or to
communicate to people who are already mathematicians, and large gaps in
proofs are often left as exercises to the reader who is left at an impasse if he
or she becomes stuck.

I believe that eventually computers will enable non-specialists and even
intelligent laypersons to follow almost any mathematical proof in any field.
Metamath is an attempt in that direction. If all of mathematics were as eas-
ily accessible as a computer programming language, I could envision com-
puter programmers and hobbyists who otherwise lack mathematical sophis-
tication exploring and being amazed by the world of theorems and proofs
in obscure specialties, perhaps even coming up with results of their own. A
tremendous advantage would be that anyone could experiment with conjec-
tures in any field—the computer would offer instant feedback as to whether
an inference step was correct.

Mathematicians sometimes have to put up with the annoyance of cranks
who lack a fundamental understanding of mathematics but insist that their
“proofs” of, say, Fermat’s Last Theorem be taken seriously. I think part
of the problem is that these people are mislead by informal mathematical
language, treating it as if they were reading ordinary expository English and
failing to appreciate the implicit underlying rigor. Such cranks are rare in the
field of computers, because computer languages are much more explicit, and
ultimately the proof is in whether a computer program works or not. With

14 CHAPTER 1. INTRODUCTION

easily accessible computer-based abstract mathematics, a mathematician
could say to a crank, “don’t bother me until you’ve demonstrated your
claim on the computer!”

1.1.3 An Impossible Dream?

Even quite basic theorems would demand almost unbelievably vast
books to display their proofs.

Robert E. Edwards16

Oh, of course no one ever really does it. It would take forever!
You just show that you could do it, that’s sufficient.

“The Ideal Mathematician” 17

There is a theorem in the primitive notation of set theory that
corresponds to the arithmetic theorem ‘1000+2000 = 3000’. The
formula would be forbiddingly long. . . even if [one] knows the def-
initions and is asked to simplify the long formula according to
them, chances are he will make errors and arrive at some incor-
rect result.

Hao Wang18

The Principia Mathematica was the crowning achievement of the
formalists. It was also the deathblow of the formalist view.. . .
[Russell] failed, in three enormous volumes, to get beyond the
elementary facts of arithmetic. He showed what can be done in
principle and what cannot be done in practice. If the mathemati-
cal process were really one of strict, logical progression, we would
still be counting our fingers.. . .
One theoretician estimates, for instance, that a demonstration
of one of Ramanujan’s conjectures assuming set theory and ele-
mentary analysis would take about two thousand pages; the length
of a deduction from first principles is nearly inconceivable. . . The
probabilists argue that. . . any very long proof can at best be viewed
as only probably correct. . .

Richard de Millo et. al.19

16[15], p. 68
17[13], p. 40
18[63], p. 140
19[14], pp. 269, 271

1.1. MATHEMATICS AS A COMPUTER LANGUAGE 15

A number of writers have conveyed the impression that the kind of ab-
solute rigor provided by Metamath is an impossible dream, suggesting that
a complete, formal verification of a typical theorem would take millions of
steps in untold volumes of books. Even if it could be done, the thinking
sometimes goes, all meaning would be lost in such a monstrous, tedious
verification.

These writers assume, however, that in order to achieve the kind of
complete formal verification they desire one must break down a proof into
individual primitive steps that make direct reference to the axioms. This
is not necessary. There is no reason not to make use of previously proved
theorems rather than proving them over and over.

Just as important, definitions can be introduced along the way, allow-
ing very complex formulas to be represented with few symbols. Not do-
ing this can lead to absurdly long formulas. For example, Gödel’s incom-
pleteness theorem, which can be expressed with a small number of de-
fined symbols, would require about 20,000 primitive symbols to express
it.20 An extreme example is Bourbaki’s language for set theory, which
requires 4,523,659,424,929 symbols plus 1,179,618,517,981 disambiguatory
links (lines connecting symbol pairs, usually drawn below or above the for-
mula) to express the number “one” [33].

A hierarchy of theorems and definitions permits an exponential growth
in the formula sizes and primitive proof steps to be described with only a
linear growth in the number of symbols used. Of course, this is how ordinary
informal mathematics is normally done anyway, but with Metamath it can
be done with absolute rigor and precision.

1.1.4 Beauty

No one shall be able to drive us from the paradise that Cantor
has created for us.

David Hilbert21

Mathematics possesses not only truth, but some supreme beauty
—a beauty cold and austere, like that of a sculpture.

Bertrand Russell22

Euclid alone has looked on Beauty bare.

Edna Millay23

20George S. Boolos, lecture at Massachusetts Institute of Technology, spring 1990
21As quoted in [40], p. 131
22[53]
23As quoted in [13], p. 150

16 CHAPTER 1. INTRODUCTION

For most people, abstract mathematics is distant, strange, and incom-
prehensible. Many popular books have tried to convey some of the sense of
beauty in famous theorems. But even an intelligent layperson is left with
only a general idea of what a theorem is about and is hardly given the tools
needed to make use of it. Traditionally, it is only after years of arduous study
that one can grasp the concepts needed for deep understanding. Metamath
allows you to approach the proof of the theorem from a quite different per-
spective, peeling apart the formulas and definitions layer by layer until an
entirely different kind of understanding is achieved. Every step of the proof
is there, pieced together with absolute precision and instantly available for
inspection through a microscope with a magnification as powerful as you
desire.

A proof in itself can be considered an object of beauty. Constructing
an elegant proof is an art. Once a famous theorem has been proved, of-
ten considerable effort is made to find simpler and more easily understood
proofs. Creating and communicating elegant proofs is a major concern of
mathematicians. Metamath is one way of providing a common language for
archiving and preserving this information.

The length of a proof can, to a certain extent, be considered an objective
measure of its “beauty,” since shorter proofs are usually considered more
elegant. In the set theory database set.mm provided with Metamath, one
goal was to make all proofs as short as possible.

1.1.5 Simplicity

God made man simple; man’s complex problems are of his own
devising.

Eccles. 7:2924

God made integers, all else is the work of man.

Leopold Kronecker25

For what is clear and easily comprehended attracts; the compli-
cated repels.

David Hilbert26

The Metamath language is simple and Spartan. Metamath treats all
mathematical expressions as simple sequences of symbols, devoid of mean-
ing. The higher-level or “metamathematical” notions underlying Metamath

24Jerusalem Bible
25Jahresberichte der Deutschen Mathematicker Vereinigung, bk. 2
26As quoted in [14], p. 273

1.1. MATHEMATICS AS A COMPUTER LANGUAGE 17

are about as simple as they could possibly be. Each individual step in a
proof involves a single basic concept, the substitution of an expression for a
variable, so that in principle almost anyone, whether mathematician or not,
can completely understand how it was arrived at.

In one of its most basic applications, Metamath can be used to develop
the foundations of mathematics from the very beginning. This is done in
the set theory database that is provided with the Metamath package and
is the subject matter of Chapter 3. Any language (a metalanguage) used
to describe mathematics (an object language) must have a mathematical
content of its own, but it is desirable to keep this content down to a bare
minimum, namely that needed to make use of the inference rules speci-
fied by the axioms. With any metalanguage there is a “chicken and egg”
problem somewhat like circular reasoning: you must assume the validity of
the mathematics of the metalanguage in order to prove the validity of the
mathematics of the object language. The mathematical content of Meta-
math itself is quite limited. Like the rules of a game of chess, the essential
concepts are simple enough so that virtually anyone should be able to un-
derstand them (although that in itself will not let you play like a master).
The symbols that Metamath manipulates do not in themselves have any
intrinsic meaning. Your interpretation of the axioms that you supply to
Metamath is what gives them meaning. Metamath is an attempt to strip
down mathematical thought to its bare essence and show you exactly how
the symbols are manipulated.

Philosophers and logicians, with various motivations, have often thought
it important to study “weak” fragments of logic [2] [35], other unconven-
tional systems of logic (such as “modal” logic [8, ch. 27]), and quantum
logic in physics [44]. Metamath provides a framework in which such sys-
tems can be expressed, with an absolute precision that makes all underlying
metamathematical assumptions rigorous and crystal clear.

Some schools of philosophical thought, for example intuitionism and con-
structivism, demand that the notions underlying any mathematical system
be as simple and concrete as possible. Metamath should meet the require-
ments of these philosophies. Metamath must be taught the symbols, axioms,
and rules for a specific theory, from the skeptical (such as intuitionism27) to
the bold (such as the axiom of choice in set theory28).

27Intuitionism does not accept the law of excluded middle (“either something is true
or it is not true”). See [62, p. xi] for discussion and references on this topic. Consider
the theorem, “There exist irrational numbers a and b such that ab is rational.” An

intuitionist would reject the following proof: If
√

2
√
2

is rational, we are done. Otherwise,

let a =
√

2
√
2

and b =
√

2. Then ab = 2, which is rational.
28The axiom of choice asserts that given any collection of pairwise disjoint nonempty

sets, there exists a set that has exactly one element in common with each set of the
collection. It is used to prove many important theorems in standard mathematics. Some
philosophers object to it because it asserts the existence of a set without specifying what
the set contains [16, p. 154]. In one foundation for mathematics due to Quine, that has

18 CHAPTER 1. INTRODUCTION

The simplicity of the Metamath language lets the algorithm (computer
program) that verifies the validity of a Metamath proof to be straightforward
and robust. You can have confidence that the theorems it verifies really can
be derived from your axioms.

1.1.6 Rigor

Rigor became a goal with the Greeks. . . But the efforts to pursue
rigor to the utmost have led to an impasse in which there is
no longer any agreement on what it really means. Mathematics
remains alive and vital, but only on a pragmatic basis.

Morris Kline29

Kline refers to a much deeper kind of rigor than that which we will
discuss in this section. Gödel’s incompleteness theorem showed that it is
impossible to achieve absolute rigor in standard mathematics because we
can never prove that mathematics is consistent (free from contradictions).
If mathematics is consistent, we will never know it, but must rely on faith. If
mathematics is inconsistent, the best we can hope for is that some clever fu-
ture mathematician will discover the inconsistency. In this case, the axioms
would probably be revised slightly to eliminate the inconsistency, as was
done in the case of Russell’s paradox, but the bulk of mathematics would
probably not be affected by such a discovery. Russell’s paradox, for example,
did not affect most of the remarkable results achieved by 19th-century and
earlier mathematicians. It mainly invalidated some of Gottlob Frege’s work
on the foundations of mathematics in the late 1800’s; in fact Frege’s work
inspired Russell’s discovery. Despite the paradox, Frege’s work contains im-
portant concepts that have significantly influenced modern logic. Kline’s
Mathematics, The Loss of Certainty [28] has an interesting discussion of
this topic.

What can be achieved with absolute certainty is the knowledge that
if we assume the axioms are consistent and true, then the results derived
from them are true. Part of the beauty of mathematics is that it is the
one area of human endeavor where absolute certainty can be achieved in
this sense. A mathematical truth will remain such for eternity. However,
our actual knowledge of whether a particular statement is a mathematical
truth is only as certain as the correctness of the proof that establishes it.
If the proof of a statement is questionable or vague, we can’t have absolute
confidence in the truth that the statement claims.

Let us look at some traditional ways of expressing proofs.

not been otherwise shown to be inconsistent, the axiom of choice turns out to be false
[12, p. 23]. The show trace_back command of the Metamath program allows you to find
out whether the axiom of choice, or any other axiom, was assumed by a proof.

29[27], p. 1209

1.1. MATHEMATICS AS A COMPUTER LANGUAGE 19

Except in the field of formal logic, almost all traditional proofs in math-
ematics are really not proofs at all, but rather proof outlines or hints as to
how to go about constructing the proof. Many gaps are left for the reader
to fill in. There are several reasons for this. First, it is usually assumed in
mathematical literature that the person reading the proof is a mathemati-
cian familiar with the specialty being described, and that the missing steps
are obvious to such a reader or at least that the reader is capable of filling
them in. This attitude is fine for professional mathematicians in the spe-
cialty, but unfortunately it often has the drawback of cutting off the rest of
the world, including mathematicians in other specialties, from understand-
ing the proof. We discussed one possible resolution to this on p. x. Second,
it is often assumed that a complete formal proof would require countless
millions of symbols (Section 1.1.3). This might be true if the proof were to
be expressed directly in terms of the axioms of logic and set theory, but it is
usually not true if we allow ourselves a hierarchy of definitions and theorems
to build upon, using a notation that allows us to introduce new symbols,
definitions, and theorems in a precisely specified way.

Even in formal logic, formal proofs that are considered complete still
contain hidden or implicit information. For example, a “proof” is usually
defined as a sequence of wffs,30 each of which is an axiom or follows from a
rule applied to previous wffs in the sequence. The implicit part of the proof
is the algorithm by which a sequence of symbols is verified to be a valid wff,
given the definition of a wff. The algorithm in this case is rather simple, but
for a computer to verify the proof, it must have the algorithm built into its
verification program.31 If one deals exclusively with axioms and elementary
wffs, it is straightforward to implement such an algorithm. But as more and
more definitions are added to the theory in order to make the expression
of wffs more compact, the algorithm becomes more and more complicated.
A computer program that implements the algorithm becomes larger and
harder to understand as each definition is introduced, and thus more prone
to bugs. The larger the program, the more suspicious the mathematician
may be about the validity of its algorithms. This is especially true because
computer programs are inherently hard to follow to begin with, and few
people enjoy verifying them manually in detail.

30A wff or well-formed formula is a mathematical expression (string of symbols) con-
structed according to some precise rules. A formal mathematical system contains (1) the
rules for constructing syntactically correct wffs, (2) a list of starting wffs called axioms,
and (3) one or more rules prescribing how to derive new wffs, called theorems, from the
axioms or previously derived theorems. An example of such a system is contained in
Metamath’s set theory database, which defines a formal system from which all of stan-
dard mathematics can be derived. Section 2.2.1 steps you through a complete example of
a formal system, and you may want to skim it now if you are unfamiliar with the concept.

31It is possible, of course, to specify wff construction syntax outside of the program
itself with a suitable input language (the Metamath language being an example), but
some proof-verification or theorem-proving programs lack the ability extend wff syntax
in such a fashion.

20 CHAPTER 1. INTRODUCTION

Metamath takes a different approach. Metamath’s “knowledge” is lim-
ited to the ability to substitute variables for expressions, subject to some
simple constraints. Once the basic algorithm of Metamath is assumed to be
debugged, and perhaps independently confirmed, it can be trusted once and
for all. The information that Metamath needs to “understand” mathematics
is contained entirely in the body of knowledge presented to Metamath. Any
errors in reasoning can only be errors in the axioms or definitions contained
in this body of knowledge. As a “constructive” language Metamath has no
conditional branches or loops like the ones that make computer programs
hard to decipher; instead, the language can only build new sequences of
symbols from earlier sequences of symbols.

The simplicity of the rules that underlie Metamath not only makes Meta-
math easy to learn but also gives Metamath a great deal of flexibility. For
example, Metamath is not limited to describing standard first-order logic;
higher-order logics and fragments of logic can be described just as easily.
Metamath gives you the freedom to define whatever wff notation you prefer;
it has no built-in conception of the syntax of a wff. With suitable axioms and
definitions, Metamath can even describe and prove things about itself. (John
Harrison discusses the “reflection” principle involved in self-descriptive sys-
tems in [20].)

The flexibility of Metamath requires that its proofs specify a lot of detail,
much more than in an ordinary “formal” proof. For example, in an ordinary
formal proof, a single step consists of displaying the wff that constitutes that
step. In order for a computer program to verify that the step is acceptable, it
first must verify that the symbol sequence being displayed is an acceptable
wff. Most proof verifiers have at least basic wff syntax built into their
programs. Metamath has no hard-wired knowledge of what constitutes a
wff built into it; instead every wff must be explicitly constructed based on
rules defining wffs that are present in a database. Thus a single step in
an ordinary formal proof may be correspond to many steps in a Metamath
proof. Despite the larger number of steps, though, this does not mean that a
Metamath proof must be significantly larger than an ordinary formal proof.
The reason is that since we have constructed the wff from scratch, we know
what the wff is, so there is no reason to display it. We only need to refer to
a sequence of statements that construct it. In a sense, the display of the wff
in an ordinary formal proof is an implicit proof of its own validity as a wff;
Metamath just makes the proof explicit. (Section 4.3 describes Metamath’s
proof notation.)

1.2 Computers and Mathematicians

The computer is important, but not to mathematics.

1.2. COMPUTERS AND MATHEMATICIANS 21

Paul Halmos32

Pure mathematicians have traditionally been indifferent to computers,
even to the point of disdain. Computer science itself is sometimes considered
to fall in the mundane realm of “applied” mathematics, perhaps essential
for the real world but intellectually unexciting to those who seek the deepest
truths in mathematics. Perhaps a reason for this attitude towards computers
is that there is little or no computer software that meets their needs, and
there may be a general feeling that such software could not even exist. On
the one hand, there are the practical computer algebra systems, which can
perform amazing symbolic manipulations in algebra and calculus, yet can’t
prove the simplest existence theorem, if the idea of a proof is present at
all. On the other hand, there are specialized automated theorem provers
that technically speaking may generate correct proofs. But sometimes their
specialized input notation may be cryptic and their output perceived to be
long, inelegant, incomprehensible proofs. The output may be viewed with
suspicion, since the program that generates it tends to be very large, and
its size increases the potential for bugs. Such a proof may be considered
trustworthy only if independently verified and “understood” by a human,
but no one wants to waste their time on such a boring, unrewarding chore.

1.2.1 Trusting the Computer

. . . I continue to find the quasi-empirical interpretation of com-
puter proofs to be the more plausible.. . . Since not everything that
claims to be a computer proof can be accepted as valid, what are
the mathematical criteria for acceptable computer proofs?

Thomas Tymoczko33

In some cases, computers have been essential tools for proving famous
theorems. But if a proof is so long and obscure that it can be verified in
a practical way only with a computer, it is vaguely felt to be suspicious.
For example, proving the famous four-color theorem (“a map needs no more
than four colors to prevent any two adjacent countries from having the same
color”) can presently only be done with the aid of a very complex computer
program which originally required 1200 hours of computer time. There has
been considerable debate about whether such a proof can be trusted and
whether such a proof is “real” mathematics [57].

However, under normal circumstances even a skeptical mathematician
would a have a great deal of confidence in the result of multiplying two
numbers on a pocket calculator, even though the precise details of what
goes on are hidden from its user. Even the verification on a supercomputer

32As quoted in [1], p. 121
33[62], p. 245

22 CHAPTER 1. INTRODUCTION

that a huge number is prime is trusted, especially if there is independent
verification; no one bothers to debate the philosophical significance of its
“proof,” even though the actual proof would be so large that it would be
completely impractical to ever write it down on paper. It seems that if the
algorithm used by the computer is simple enough to be readily understood,
then the computer can be trusted.

Metamath adopts this philosophy. The simplicity of its language makes it
easy to learn, and because of its simplicity one can have essentially absolute
confidence that a proof is correct. All axioms, rules, and definitions are
available for inspection at any time because they are defined by the user;
there are no hidden or built-in rules that may be prone to subtle bugs. The
basic algorithm at the heart of Metamath is simple and fixed, and it can be
assumed to be bug-free and robust with a degree of confidence approaching
certainty. (An independently written implementation of Metamath could
pretty much eliminate any residual doubt on the part of a skeptic.)

1.2.2 Trusting the Mathematician

There is no Algebraist nor Mathematician so expert in his sci-
ence, as to place entire confidence in any truth immediately upon
his discovery of it, or regard it an any thing, but a mere probabil-
ity. Every time he runs over his proofs, his confidence encreases;
but still more by the approbation of his friends; and is rais’d to
its utmost perfection by the universal assent and applauses of the
learned world.

David Hume34

Stanislaw Ulam estimates that mathematicians publish 200,000
theorems every year. A number of these are subsequently con-
tradicted or otherwise disallowed, others are thrown into doubt,
and most are ignored.

Richard de Millo et. al.35

Whether or not the computer can be trusted, humans of course will oc-
casionally err. Only the most memorable proofs get independently verified,
and of these only a handful of truly great ones achieve the status of being
“known” mathematical truths that are used without giving a second thought
to their correctness.

There are many famous examples of incorrect theorems and proofs in
mathematical literature.

34A Treatise of Human Nature, as quoted in [14], p. 267
35[14], p. 269

1.2. COMPUTERS AND MATHEMATICIANS 23

• There have been thousands of purported proofs of Fermat’s Last The-
orem (“no integer solutions exist to xn + yn = zn for n > 2”), by
amateurs, cranks, and well-regarded mathematicians [56, p. 5]. Fer-
mat wrote a note in his copy of Bachet’s Diophantus that he found
“a truly marvelous proof of this theorem but this margin is too nar-
row to contain it” [29, p. 507]. A recent, much publicized proof by
Yoichi Miyaoka was shown to be incorrect (Science News, April 9,
1988, p. 230). The theorem was finally proved by Andrew Wiles (Sci-
ence News, July 3, 1993, p. 5), but it initially had some gaps and took
over a year after its announcement to be checked thoroughly by ex-
perts. On Oct. 25, 1994, Wiles announced that the last gap found in
his proof had been filled in.

• In 1882, M. Pasch discovered that an axiom was omitted from Euclid’s
formulation of geometry; without it, the proofs of important theorems
of Euclid are not valid. Pasch’s axiom states that a line that intersects
one side of a triangle must also intersect another side, provided that it
does not touch any of the triangle’s vertices. The omission of Pasch’s
axiom went unnoticed for 2000 years [13, p. 160], in spite of (one
presumes) the thousands of students, instructors, and mathematicians
who studied Euclid.

• The first published proof of the famous Schröder-Bernstein theorem
in set theory was incorrect [16, p. 148]. This theorem states that if
there exists a 1-to-1 function36 from set A into set B and vice-versa,
then sets A and B have a 1-to-1 correspondence. Although it sounds
simple and obvious, the standard proof is quite long and complex.

• In the early 1900’s, Hilbert published a purported proof of the con-
tinuum hypothesis, which was eventually established as unprovable by
Cohen in 1963 [16, p. 166]. The continuum hypothesis states that no
infinity (“transfinite cardinal number”) exists whose size (or “cardi-
nality”) is between the size of the set of integers and the size of the
set of real numbers. This hypothesis originated with German mathe-
matician Georg Cantor in the late 1800’s, and his inability to prove it
is said to have contributed to mental illness that afflicted him in his
later years.

• An incorrect proof of the four-color theorem was published by Kempe
in 1879 [11, p. 582]; it stood for 11 years before its flaw was discov-
ered. This theorem states that any map can be colored using only
four colors, so that no two adjacent countries have the same color. In
1976 the theorem was finally proved by the famous computer-assisted
proof of Haken, Appel, and Koch [57]. Or at least it seems that way.

36A set is any collection of objects. A function or mapping is a rule that assigns to each
element of one set (called the function’s domain) an element from another set.

24 CHAPTER 1. INTRODUCTION

Mathematician H. S. M. Coxeter has doubts [13, p. 58]: “I have a
feeling that is an untidy kind of use of the computers, and the more
you correspond with Haken and Appel, the more shaky you seem to
be.”

• Many false “proofs” of the Poincaré conjecture have been proposed
over the years. This conjecture states that any object that mathemat-
ically behaves like a three-dimensional sphere is a three-dimensional
sphere topologically, regardless of how it is distorted. In March 1986,
mathematicians Colin Rourke and Eduardo Rêgo caused a stir in the
mathematical community by announcing that they had found a proof;
in November of that year the proof was found to be false [46, p. 218].
It was finally proved in 2003 by Grigory Perelman [58].

Many counterexamples to “theorems” in recent mathematical literature
related to Clifford algebras have been found by Pertti Lounesto (who passed
away in 2002). See the web page http://mathforum.org/library/view/

4933.html.
One of the purposes of Metamath is to allow proofs to be expressed with

absolute precision. Developing a proof in the Metamath language can be
challenging, because Metamath will not permit even the tiniest mistake.
But once the proof is created, its correctness can be trusted immediately,
without having to depend on the process of peer review for confirmation.

1.3 The Use of Computers in Mathematics

1.3.1 Computer Algebra Systems

For the most part, you will find that Metamath is not a practical tool for
manipulating numbers. (Even proving that 2 + 2 = 4, if you start with
set theory, can be quite complex!) Several commercial mathematics pack-
ages are quite good at arithmetic, algebra, and calculus, and as practical
tools they are invaluable. But they have no notion of proof, and cannot
understand statements starting with “there exists such and such...”.

Software packages such as Mathematica [66] do not concern themselves
with proofs but instead work directly with known results. These pack-
ages primarily emphasize heuristic rules such as the substitution of equals
for equals to achieve simpler expressions or expressions in a different form.
Starting with a rich collection of built-in rules and algorithms, users can add
to the collection by means of a powerful programming language. However,
results such as, say, the existence of a certain abstract object without dis-
playing the actual object cannot be expressed (directly) in their languages.
The idea of a proof from a small set of axioms is absent. Instead this soft-
ware simply assumes that each fact or rule you add to the built-in collection
of algorithms is valid. One way to view the software is as a large collection

http://mathforum.org/library/view/4933.html
http://mathforum.org/library/view/4933.html

1.3. THE USE OF COMPUTERS IN MATHEMATICS 25

of axioms from which the software, with certain goals, attempts to derive
new theorems, for example equating a complex expression with a simpler
equivalent. But the terms “theorem” and “proof,” for example, are not
even mentioned in the index of the user’s manual for Mathematica. What
is also unsatisfactory from a philosophical point of view is that there is no
way to ensure the validity of the results other than by trusting the writer of
each application module or tediously checking each module by hand, simi-
lar to checking a computer program for bugs.37 While of course extremely
valuable in applied mathematics, computer algebra systems tend to be of
little interest to the theoretical mathematician except as aids for exploring
certain specific problems.

Because of possible bugs, trusting the output of a computer algebra sys-
tem for use as theorems in a proof-verifier would defeat the latter’s goal of
rigor. On the other hand, a fact such that a certain relatively large number
is prime, while easy for a computer algebra system to derive, might have
a long, tedious proof that could overwhelm a proof-verifier. One approach
for linking computer algebra systems to a proof-verifier while retaining the
advantages of both is to add a hypothesis to each such theorem indicating
its source. For example, a constant maple could indicate the theorem came
from the Maple package, and would mean “assuming Maple is consistent,
then. . . ” This and many other topics concerning the formalization of math-
ematics are discussed in John Harrison’s very interesting PhD thesis [21],
available on the Web.

1.3.2 Automated Theorem Provers

A mathematical theory is “decidable” if a mechanical method or algorithm
exists that is guaranteed to determine whether or not a particular formula
is a theorem. Among the few theories that are decidable is elementary ge-
ometry, as was shown by a classic result of logician Alfred Tarski in 1948
[60].38 But most theories, including elementary arithmetic, are undecidable.
This fact contributes to keeping mathematics alive and well, since mathe-

37Two examples illustrate why the knowledge database of computer algebra systems
should sometimes be regarded with a certain caution. If you ask Mathematica (version
3.0) to Solve[x^n + y^n == z^n , n] it will respond with {{n->-2}, {n->-1}, {n->1},
{n->2}}. In other words, Mathematica seems to “know” that Fermat’s Last Theorem is
true! (At the time this version of Mathematica was released this fact was unknown.) If
you ask Maple to solve(x^2 = 2^x) then simplify({"}), it returns the solution set {2,
4}, apparently unaware that 0.7666647. . . is also a solution.

38Tarski’s result actually applies to a subset of the geometry discussed in elementary
textbooks. This subset includes most of what would be considered elementary geometry
but it is not powerful enough to express, among other things, the notions of the circum-
ference and area of a circle. Extending the theory in a way that includes notions such
as these makes the theory undecidable, as was also shown by Tarski. Tarski’s algorithm
is far too inefficient to implement practically on a computer. A practical algorithm for
proving a smaller subset of geometry theorems (those not involving concepts of “order”
or “continuity”) was discovered by Chinese mathematician Wu Wen-tsün in 1977 [10].

26 CHAPTER 1. INTRODUCTION

maticians know that they will never be replaced by computers (providing
one believes Roger Penrose’s argument that a computer can never replace
the brain [45]). In fact, elementary geometry is often considered a “dead”
field for the simple reason that it is decidable.

On the other hand, the undecidability of a theory does not mean that
one cannot use a computer to search for proofs, providing one is willing to
give up if a proof is not found after a reasonable amount of time. The field of
automated theorem proving specializes in pursuing such computer searches.
Among the more successful results to date are those based on an algorithm
known as Robinson’s resolution principle [49].

Automated theorem provers can be excellent tools for those willing to
learn how to use them. But they are not widely used in mainstream pure
mathematics, even though they could probably be useful in many areas.
There are several reasons for this. Probably most important, the main goal
in pure mathematics is to arrive at results that are considered to be deep or
important; proving them is essential but secondary. Usually, an automated
theorem prover cannot assist in this main goal, and by the time the main
goal is achieved, the mathematician may have already figured out the proof
as a by-product. There is also a notational problem. Mathematicians are
used to using very compact syntax where one or two symbols (heavily de-
pendent on context) can represent very complex concepts; this is part of the
hierarchy they have built up to tackle difficult problems. A theorem prover
on the other hand might require that a theorem be expressed in “first-order
logic,” which is the logic on which most of mathematics is ultimately based
but which is not ordinarily used directly because expressions can become
very long. Some automated theorem provers are experimental programs,
limited in their use to very specialized areas, and the goal of many is simply
research into the nature of automated theorem proving itself. Finally, much
research remains to be done to enable them to prove very deep theorems.
One significant recent result was a computer proof by Larry Wos and col-
leagues that every Robbins algebra is a Boolean algebra (New York Times,
Dec. 10, 1996).39

39In 1933, E. V. Huntington presented the following axiom system for Boolean algebra
with a unary operation n and a binary operation +:

x+ y = y + x
(x+ y) + z = x+ (y + z)

n(n(x) + y) + n(n(x) + n(y)) = x

Herbert Robbins, a student of Huntington, conjectured that the last equation can be
replaced with a simpler one:

n(n(x+ y) + n(x+ n(y))) = x

Robbins and Huntington could not find a proof. The problem was later studied unsuccess-
fully by Tarski and his students, and it remained an unsolved problem until a computer
found the proof in 1996. For more information on the Robbins algebra problem see [67].

1.3. THE USE OF COMPUTERS IN MATHEMATICS 27

How does Metamath relate to automated theorem provers? A theorem
prover is primary concerned with one theorem at a time (perhaps tapping
into a small database of known theorems) whereas Metamath is more like
a theorem archiving system, storing both the theorem and its proof in a
database for access and verification. Metamath is one answer to “what do
you do with the output of a theorem prover?” and could be viewed as the
next step in the process. Automated theorem provers could be useful tools
for helping develop its database, although as of this writing there are no
software translation tools that do this. Note that very long, automatically
generated proofs can make your database fat and ugly and cause Metamath’s
proof verification to take a long time to run. Unless you have a particularly
good program that generates very concise proofs, it might be best to consider
the use of automatically generated proofs as a quick-and-dirty approach, to
be manually rewritten at some later date.

If you are interested in automatic theorem provers, three well-regarded
programs are Isabelle40, hol41, and otter42.

otter is also available on a disk included with the book Automated
Reasoning: Introduction and Applications [67]. This program not only is
able to generate relatively efficient proofs, it can even be instructed to search
for shorter proofs. The effective use of otter does require a certain amount
of experience, skill, and patience. The axiom system used in the set.mm set
theory database can be expressed to otter using a method described in
[34].43 When successful, this method tends to generate short and clever
proofs, but my experiments with it indicate that the method will find proofs
within a reasonable time only for relatively easy theorems. It is still fun to
experiment with.

Reference [7] surveys a number of approaches people have explored in
the field of automated theorem proving.

1.3.3 Proof Verifiers

A proof verifier is a program that doesn’t generate proofs but instead verifies
proofs that you give it. Many proof verifiers have limited built-in automated
proof capabilities, such as figuring out simple logical inferences (while still
being guided by a person who provides the overall proof). Metamath has
no built-in automated proof capability other than the limited capability of
its Proof Assistant.

Proof-verification languages are not used as frequently as they might be.
Pure mathematicians are more concerned with producing new results, and
such detail and rigor would interfere with that goal. The use of computers in

40http://www.cl.cam.ac.uk/Research/HVG/Isabelle
41http://cs.anu.edu.au/student/comp8033/hol.html
42http://www.cs.unm.edu/~mccune/otter/
43To use those axioms with otter, they must be restated in a way that eliminates the

need for “dummy variables.” See the Comment on p. 105.

http://www.cl.cam.ac.uk/Research/HVG/Isabelle
http://cs.anu.edu.au/student/comp8033/hol.html
http://www.cs.unm.edu/~mccune/otter/

28 CHAPTER 1. INTRODUCTION

pure mathematics is primarily focused on automated theorem provers (not
verifiers), again with the ultimate goal of aiding the creation of new math-
ematics. Automated theorem provers are usually concerned with attacking
one theorem at time rather than making a large, organized database easily
available to the user. Metamath is one way to help close this gap.

Besides Metamath, there are several other on-going projects with the goal
of formalizing mathematics into computer-verifiable databases. One such
project is qed, and several mathematicians are currently working to agree
on the requirements for a universal language. Information on this project
is available at http://www-unix.mcs.anl.gov/qed. One specific proof-
verification language is Mizar, which can display its proofs in the informal
language that mathematicians are accustomed to. Information on the Mizar
language is available http://mizar.org.

Other higher-level proof verification languages are lcf and hol; a good
overview of these and others is given in [20]. All of these languages are
fundamentally different from Metamath in that much of the mathemati-
cal foundational knowledge is embedded in the underlying proof-verification
program, rather than placed directly in the database that is being verified.
For the working mathematician these languages are often more practical
to use than Metamath, but they can have a steep learning curve for those
without a mathematical background. For example, one usually must have a
fair understanding of mathematical logic in order to follow their proofs.

For the working mathematician, Mizar is an excellent tool for rigorously
documenting proofs. Mizar typesets its proofs in the informal English used
by mathematicians (and, while fine for them, are just as inscrutable by
laypersons!). A price paid for Mizar is a relatively steep learning curve of a
couple of weeks. Several mathematicians are actively formalizing different
areas of mathematics using Mizar and publishing the proofs in a dedicated
journal. Unfortunately the task of formalizing mathematics is still looked
down upon to a certain extent since it doesn’t involve the creation of new
mathematics.

To summarize our discussions of computers and mathematics, computer
algebra systems can be viewed as theorem generators focusing on a narrow
realm of mathematics (numbers and their properties), automated theorem
provers as proof generators for specific theorems in a much broader realm
covered by a built-in formal system such as first-order logic, proof verifiers
in general as proof documentors usually restricted to first-order logic, and
Metamath in particular as a proof documentor whose realm is essentially
unlimited.

http://www-unix.mcs.anl.gov/qed
http://mizar.org

1.4. MATHEMATICS AND METAMATH 29

1.4 Mathematics and Metamath

1.4.1 Standard Mathematics

There are a number of ways that Metamath can be used with standard
mathematics. The most satisfying way philosophically is the start at the
very beginning, and develop the desired mathematics from the axioms of
logic and set theory. This is the approach taken in the set.mm module
provided with the Metamath software. Among other things, this module
builds up to the axioms of real and complex numbers (see Section 3.7), and
a standard development of analysis, for example, could start at that point,
using it as a basis. Besides this philosophical advantage, there are practical
advantages to having all of the tools of set theory available in the supporting
infrastructure.

On the other hand, you may wish to start with the standard axioms of
a mathematical theory without going through the set theoretical proofs of
those axioms. You will need mathematical logic to make inferences, but if
you wish you can simply introduce theorems of logic as “axioms” wherever
you need them, with the implicit assumption that in principle they can be
proved, if they are obvious to you. If you choose this approach, you will
probably want to review the notation used in set.mm so that your own
notation will be consistent with it.

1.4.2 Other Formal Systems

Unlike some programs, Metamath is not limited to any specific area of math-
ematics, nor committed to any particular mathematical philosophy such as
classical logic versus intuitionism, nor limited, say, to expressions in first-
order logic. Although the database set.mm included with the Metamath soft-
ware package describes standard logic and set theory, Metamath is actually
a general-purpose language for describing a wide variety of formal systems.
Non-standard systems such as modal logic, intuitionist logic, higher-order
logic, quantum logic, and category theory can all be described with the
Metamath language. You define the symbols you prefer and tell Metamath
the axioms and rules you want to start from, and Metamath will verify any
inferences you make from those axioms and rules. A simple example of a
non-standard formal system is Hofstadter’s MIU system, whose Metamath
description is presented in Appendix D.

Since the days of David Hilbert, mathematicians have been concerned
with the fact that the metalanguage used to describe mathematics may
be stronger than the mathematics being described. Metamath’s underlying
finitary, constructive nature provides a good philosophical basis for studying
even the weakest logics.

Actually, the usual treatment of many non-standard formal systems uses
model theory or proof theory to describe these systems; these theories, in

30 CHAPTER 1. INTRODUCTION

turn, are based on standard set theory. In other words, a non-standard
formal system is defined as a set with certain properties, and standard set
theory is used to derive additional properties of this set. The standard
set theory database provided with Metamath can be used for this purpose,
and the development of a special axiom system for the non-standard formal
system becomes unnecessary. The model- or proof-theoretic approach often
allows you to prove much deeper results with less effort.

1.4.3 Metamath and Its Philosophy

Closely related to Metamath is a philosophy or way of looking at mathemat-
ics. This philosophy is related to the formalist philosophy of Hilbert and
his followers [27, pp. 1203–1208] [4, p. 6]. In this philosophy, mathematics
is viewed as nothing more than a set of rules that manipulate symbols, to-
gether with the consequences of those rules. While the mathematics being
described may be complex, the rules used to describe it (the “metamath-
ematics”) should be as simple as possible. In particular, proofs should be
restricted to dealing with concrete objects (the symbols we write on paper
rather than the abstract concepts they represent) in a constructive manner;
these are called “finitary” proofs [54, pp. 2–3].

Whether or not you find Metamath interesting or useful will in part de-
pend on the appeal you find in its philosophy, and this appeal will probably
depend on your particular goals with respect to mathematics. For exam-
ple, if you are a pure mathematician at the forefront of discovering new
mathematical knowledge, you will probably find that the rigid formality of
Metamath stifles your creativity. On the other hand, we would argue that
once this knowledge is discovered, there are advantages to documenting it
in a standard format that will make it accessible to others. Sixty years
from now, your field may be dormant, and as Davis and Hersh put it, your
“writings would become less translatable than those of the Maya” [13, p. 37].

1.4.4 A History of the Approach Behind Metamath

Probably the one work that has had the most motivating influence on Meta-
math is Whitehead and Russell’s monumental Principia Mathematica [65],
whose aim was to deduce all of mathematics from a small number of primi-
tive ideas, in a very explicit way that in principle anyone could understand
and follow. While this work was tremendously influential in its time, from a
modern perspective it suffers from several drawbacks. Both its notation and
its underlying axioms are now considered dated and are no longer used. From
our point of view, its development is not really as accessible as we would
like to see; for practical reasons, proofs become more and more sketchy as
its mathematics progresses, and working them out in fine detail requires
a degree of mathematical skill and patience that many people don’t have.
There are numerous small errors, which is understandable given the tedious,

1.4. MATHEMATICS AND METAMATH 31

technical nature of the proofs and the lack of a computer to verify the de-
tails. However, even today Principia Mathematica stands out as the work
closest in spirit to Metamath. It remains a mind-boggling work, and one
can’t help but be amazed at seeing “1 + 1 = 2” finally appear on page 83 of
Volume II (Theorem *110.643).

The origin of the proof notation used by Metamath dates back to the
1950’s, when the logician C. A. Meredith expressed his proofs in a compact
notation called “condensed detachment” [23] [26] [38] [47]. This notation
allows proofs to be communicated unambiguously by merely referencing the
axiom, rule, or theorem used at each step, without explicitly indicating the
substitutions that have to be made to the variables in that axiom, rule,
or theorem. Ordinarily, condensed detachment is more or less limited to
propositional calculus. The concept has been extended to first-order logic
in [34], making it is easy to write a small computer program to verify proofs
of simple first-order logic theorems.

A key concept behind the notation of condensed detachment is called
“unification,” which is an algorithm for determining what substitutions to
variables have to be made to make two expressions match each other. Uni-
fication was first precisely defined by the logician J. A. Robinson, who used
it in the development of a powerful theorem-proving technique called the
“resolution principle” [49]. Metamath does not make use of the resolution
principle, which is intended for systems of first-order logic. Metamath’s
use is not restricted to first-order logic, and as we have mentioned it does
not automatically discover proofs. However, unification is a key idea be-
hind Metamath’s proof notation, and Metamath makes use of a very simple
version of it (Section 4.3.1).

1.4.5 Metamath and First-Order Logic

First-order logic is the supporting structure for standard mathematics. On
top of it is set theory, which contains the axioms from which virtually all of
mathematics can be derived—a remarkable fact.44

One of the things that makes Metamath more practical for first-order
theories is a set of axioms for first-order logic designed specifically with
Metamath’s approach in mind. These are included in a standard database
called set.mm which comes with the Metamath software. See Chapter 3
for a detailed description; the axioms are shown in Section 3.3. While logi-
cally equivalent to standard axiom systems, our axiom system breaks up the
standard axioms into smaller pieces such that from them, you can directly
derive what in other systems can only be derived as higher-level “metathe-

44An exception seems to be category theory. There are several schools of thought on
whether category theory is derivable from set theory. At a minimum, it appears that an
additional axiom is needed that asserts the existence of an “inaccessible cardinal” (a type
of infinity so large that standard set theory can’t prove or deny that it exists). For more
information, see [22, pp. 328–331] and [6].

32 CHAPTER 1. INTRODUCTION

orems.” In other words, it is more powerful than the standard axioms from
a metalogical point of view. A rigorous justification for this system and its
“metalogical completeness” is found in [34]. The system is closely related
to a system developed by Monk and Tarski in 1965 [39].

For example, the formula ∃xx = y (given y, there exists some x equal to
it) is a theorem of logic,45 whether or not x and y are distinct variables. In
many systems of logic, we would have to prove two theorems to arrive at this
result. First we would prove “∃xx = x,” then we would separately prove
“∃xx = y, where x and y are distinct variables.” We would then combine
these two special cases “outside of the system” (i.e. in our heads) to be able
to claim, “∃xx = y, regardless of whether x and y are distinct.” In other
words, in the combination of the two special cases is a metatheorem. In the
system of logic used in Metamath’s set theory database, the axioms of logic
are broken down into small pieces that allow them to reassembled in such a
way that theorems such as these can be proved directly.

Breaking down the axioms in this way makes them look peculiar and not
very intuitive at first, but rest assured that they are correct and complete.
Their correctness is ensured because they are theorem schemes of standard
first-order logic (which you can easily verify if you are a logician). Their
completeness follows from the fact that we explicitly derive the standard
axioms of first-order logic as theorems. Deriving the standard axioms is
somewhat tricky, but once we’re there, we have at our disposal a system
that is less awkward to work with in formal proofs. In technical terms
that logicians understand, we eliminate the cumbersome concepts of “free
variable,” “bound variable,” and “proper substitution” as primitive notions.
These concepts are present in our system but are defined in terms of concepts
expressed by the axioms and can be eliminated in principle. In standard
systems, these concepts are really like additional, implicit axioms that are
somewhat complex and cannot be eliminated.

The traditional approach to logic, wherein free variables and proper sub-
stitution is defined, is also possible to do directly in the Metamath language.
However, the notation tends to become awkward, and there are disadvan-
tages: for example, extending the definition of a wff with a definition is
awkward, because the free variable and proper substitution concepts have
to have their definitions also extended. Our choice of axioms for set.mm is to
a certain extent a matter of style, in an attempt to achieve overall simplicity,
but you should also be aware that the traditional approach is possible as
well if you should choose it.

45Specifically, it is a theorem of those systems of logic that assume non-empty domains.
It is not a theorem of more general systems that include the empty domain, in which
nothing exists, period! Such systems are called “free logics.” For a discussion of these
systems, see [31]. Since our use for logic is as a basis for set theory, which has a non-empty
domain, it is more convenient (and more traditional) to use a less general system. An
interesting curiosity is that, using a free logic as a basis for Zermelo-Fraenkel set theory
(with the redundant Axiom of the Null Set omitted), we cannot even prove the existence
of a single set without assuming the axiom of infinity!

Chapter 2

Using the Metamath
Program

2.1 Installation

The way that you install Metamath on your computer system will vary for
different computers. Current instructions are provided with the Metamath
program download at http://metamath.org. In general, the installation
is simple. There is one file containing the Metamath program itself. This
file is usually called metamath or metamath.xxx where xxx is the convention
(such as exe) for an executable program on your operating system. There
are several additional files containing samples of the Metamath language,
all ending with .mm. The file set.mm contains logic and set theory and can
be used as a starting point for other areas of mathematics.

You will also need a text editor capable of editing plain ascii1 text in
order to prepare your input files. Most computers have this capability built
in. Note that plain text is not necessarily the default for some word pro-
cessing programs, especially if they can handle different fonts; for example,
with Microsoft Word, you must save the file in the format “Text Only With
Line Breaks” to get a plain text file.2

On some computer systems, Metamath does not have the capability to
print its output directly; instead, you send its output to a file (using the
open commands described later). The way you print this output file depends
on your computer. Some computers have a print command, whereas with
others, you may have to read the file into an editor and print it from there.

1American Standard Code for Information Interchange
2It is recommended that all lines in a Metamath source file be 79 characters or less in

length for compatibility among different computer terminals. When creating a source file
on an editor such as Word, select a monospaced font such as Courier or Monaco to make
this easier to achieve. Better yet, just use a plain text editor such as Notepad.

33

http://metamath.org

34 CHAPTER 2. USING THE METAMATH PROGRAM

If you want to print your Metamath source files with typeset formulas
containing standard mathematical symbols, you will need the LATEX type-
setting program, which is widely and freely available for most operating
systems. It runs natively on Unix and Linux, and can be installed on Win-
dows as part of the free Cygwin package (http://cygwin.com).

You can also produce html3 web pages. The help html command in
the Metamath program will assist you with this feature.

2.2 Your First Formal System

2.2.1 From Nothing to Zero

To give you a feel for what the Metamath language looks like, we will take a
look at a very simple example from formal number theory. This example is
taken from Mendelson [36, p. 123].4 We will look at a small subset of this
theory, namely that part needed for the first number theory theorem proved
in [36].

First we will look at a standard formal proof for the example we have
picked, then we will look at the Metamath version. If you have never been
exposed to formal proofs, the notation may seem to be such overkill to ex-
press such simple notions that you may wonder if you are missing something.
You aren’t. The concepts involved are in fact very simple, and a detailed
breakdown in this fashion is necessary to express the proof in a way that can
be verified mechanically. And as you will see, Metamath breaks the proof
down into even finer pieces so that the mechanical verification process can
be about as simple as possible.

Before we can introduce the axioms of the theory, we must define the
syntax rules for forming legal expressions (combinations of symbols) with
which those axioms can be used. The number 0 is a term; and if t and
r are terms, so is (t + r). Here, t and r are “metavariables” ranging over
terms; they themselves do not appear as symbols in an actual term. Some
examples of actual terms are (0 + 0) and ((0 + 0) + 0). (Note that our
theory describes only the number zero and sums of zeroes. Of course, not
much can be done with such a trivial theory, but remember that we have
picked a very small subset of complete number theory for our example. The
important thing for you to focus on is our definitions that describe how
symbols are combined to form valid expressions, and not on the content or
meaning of those expressions.) If t and r are terms, an expression of the
form t = r is a wff (well-formed formula); and if P and Q are wffs, so is
(P → Q) (which means “P implies Q” or “if P then Q”). Here P then
Q are metavariables ranging over wffs. Examples of actual wffs are 0 = 0,

3HyperText Markup Language
4To keep the example simple, we have changed the formalism slightly, and what we

call axioms are strictly speaking theorems in [36].

http://cygwin.com

2.2. YOUR FIRST FORMAL SYSTEM 35

(0 + 0) = 0, (0 = 0 → (0 + 0) = 0), and (0 = 0 → (0 = 0 → 0 = (0 + 0))).
(Our notation makes use of more parentheses than are customary, but the
elimination of ambiguity this way simplifies our example by avoiding the
need to define operator precedence.)

The axioms of our theory are all wffs of the following form, where t, r,
and s are any terms:

(t = r → (t = s→ r = s))(A1)

(t+ 0) = t(A2)

Note that there are an infinite number of axioms since there are an
infinite number of possible terms. A1 and A2 are properly called “axiom
schemes,” but we will refer to them as “axioms” for brevity.

An axiom is a theorem; and if P and (P → Q) are theorems (where P
and Q are wffs), then Q is also a theorem. The second part of this definition
is called the modus ponens (MP) rule of inference. It allows us to obtain
new theorems from old ones.

The proof of a theorem is a sequence of one or more theorems, each
of which is either an axiom or the result of modus ponens applied to two
previous theorems in the sequence, and the last of which is the theorem
being proved.

The theorem we will prove for our example is very simple: t = t. The
proof of our theorem follows. Study it carefully until you feel sure you un-
derstand it.

1. (t+ 0) = t (by axiom A2)
2. (t+ 0) = t (by axiom A2)
3. ((t+ 0) = t→ ((t+ 0) = t→ t = t)) (by axiom A1)
4. ((t+ 0) = t→ t = t) (by MP applied to

steps 2 and 3)
5. t = t (by MP applied to

steps 1 and 4)

(You may wonder why step 1 is repeated twice. This is not necessary in the
formal language we have defined, but in Metamath’s “reverse Polish nota-
tion” for proofs, a previous step can be referred to only once. The repetition
of step 1 here will enable you to see more clearly the correspondence of this
proof with the Metamath version on p. 44.)

Our theorem is more properly called a “theorem scheme,” for it repre-
sents an infinite number of theorems, one for each possible term t. Two
examples of actual theorems would be 0 = 0 and (0 + 0) = (0 + 0). Rarely
do we prove actual theorems, since by proving schemes we can prove an
infinite number of theorems in one fell swoop. Similarly, our proof should
really be called a “proof scheme.” To obtain an actual proof, pick an actual
term to use in place of t, and substitute it for t throughout the proof.

36 CHAPTER 2. USING THE METAMATH PROGRAM

Let’s discuss what we have done here. The axioms of our theory, A1 and
A2, are trivial and obvious. Everyone knows that adding zero to something
doesn’t change it, and also that if two things are equal to a third, then they
are equal to each other. In fact, stating the trivial and obvious is a goal
to strive for in any axiomatic system. From trivial and obvious truths that
everyone agrees upon, we can prove results that are not so obvious yet have
absolute faith in them. If we trust the axioms and the rules, we must, by
definition, trust the consequences of those axioms and rules, if logic is to
mean anything at all.

Our rule of inference, modus ponens, is also pretty obvious once you
understand what it means. If we prove a fact P , and we also prove that P
implies Q, then Q necessarily follows as a new fact. The rule provides us
with a means for obtaining new facts (i.e. theorems) from old ones.

The theorem that we have proved, t = t, is so fundamental that you may
wonder why it isn’t one of the axioms. In some axiom systems of arithmetic,
it is an axiom. The choice of axioms in a theory is to some extent arbitrary
and even an art form, constrained only by the requirement that any two
equivalent axiom systems be able to derive each other as theorems. We
could imagine that the inventor of our axiom system originally included
t = t as an axiom, then discovered that it could be derived as a theorem
from the other axioms. Because of this, it was not necessary to keep it as an
axiom. By eliminating it, the final set of axioms became that much simpler.

Unless you have worked with formal proofs before, it probably wasn’t
apparent to you that t = t could be derived from our two axioms until you
saw the proof. While you certainly believe that t = t is true, you might not
be able to convince an imaginary skeptic who believes only in our two axioms
until you produce the proof. Formal proofs such as this are hard to come up
with when you first start working with them, but after you get used to them
they can become interesting and fun. Once you understand the idea behind
formal proofs you will have grasped the fundamental principle that underlies
all of mathematics. As the mathematics becomes more sophisticated, its
proofs become more challenging, but ultimately they all can be broken down
into individual steps as simple as the ones in our proof above.

Mendelson’s book, from which our example was taken, contains a number
of detailed formal proofs such as these, and you may be interested in looking
it up. The book is intended for mathematicians, however, and most of it
is rather advanced. Popular literature describing formal proofs include [51,
p. 296] and [24, pp. 204–230].

2.2.2 Converting It to Metamath

Formal proofs such as the one in our example break down logical reasoning
into small, precise steps that leave little doubt that the results follow from
the axioms. You might think that this would be the finest breakdown we can
achieve in mathematics. However, there is more to the proof than meets the

2.2. YOUR FIRST FORMAL SYSTEM 37

eye. Although our axioms were rather simple, a lot of verbiage was needed
before we could even state them: we needed to define “term,” “wff,” and so
on. In addition, there are a number of implied rules that we haven’t even
mentioned. For example, how do we know that step 3 of our proof follows
from axiom A1? There is some hidden reasoning involved in determining
this. Axiom A1 has two occurrences of the letter t. One of the implied
rules states that whatever we substitute for t must be a legal term.5 The
expression t+ 0 is pretty obviously a legal term whenever t is, but suppose
we wanted to substitute a huge term with thousands of symbols? Certainly
a lot of work would be involved in determining that it really is a term, but in
ordinary formal proofs all of this work would be considered a single “step.”

To express our axiom system in the Metamath language, we must de-
scribe this auxiliary information in addition to the axioms themselves. Meta-
math does not know what a “term” or a “wff” is. In Metamath, the specifi-
cation of the ways in which we can combine symbols to obtain terms and wffs
are like little axioms in themselves. These auxiliary axioms are expressed in
the same notation as the “real” axioms, and Metamath does not distinguish
between the two. The distinction is made by you, i.e. by the way in which
you interpret the notation you have chosen to express these two kinds of
axioms.

The Metamath language breaks down mathematical proofs into tiny
pieces, much more so than in ordinary formal proofs. If a single step in-
volves the substitution of a complex term for one of its variables, Metamath
must see this single step broken down into many small steps. This fine-
grained breakdown is what gives Metamath generality and flexibility as it
lets it not be limited to any particular mathematical notation.

Metamath’s proof notation is not, in itself, intended to be read by hu-
mans but rather is in a compact format intended for a machine. The Meta-
math program will convert this notation to a form you can understand, using
the show proof command. You can tell the program what level of detail
of the proof you want to look at. You may want to look at just the logical
inference steps that correspond to ordinary formal proof steps, or you may
want to see the fine-grained steps that prove that an expression is a term.

Here, without further ado, is our example converted to the Metamath
language:

$(Declare the constant symbols we will use $)

$c 0 + = -> () term wff |- $.

$(Declare the metavariables we will use $)

$v t r s P Q $.

$(Specify properties of the metavariables $)

tt $f term t $.

5Some authors make this implied rule explicit by stating, “only expressions of the
above form are terms,” after defining “term.”

38 CHAPTER 2. USING THE METAMATH PROGRAM

tr $f term r $.

ts $f term s $.

wp $f wff P $.

wq $f wff Q $.

$(Define "term" and "wff" $)

tze $a term 0 $.

tpl $a term (t + r) $.

weq $a wff t = r $.

wim $a wff (P -> Q) $.

$(State the axioms $)

a1 $a |- (t = r -> (t = s -> r = s)) $.

a2 $a |- (t + 0) = t $.

$(Define the modus ponens inference rule $)

${

min $e |- P $.

maj $e |- (P -> Q) $.

mp $a |- Q $.

$}

$(Prove a theorem $)

th1 $p |- t = t $=

$(Here is its proof: $)

tt tze tpl tt weq tt tt weq tt a2 tt tze tpl

tt weq tt tze tpl tt weq tt tt weq wim tt a2

tt tze tpl tt tt a1 mp mp

$.

A “database” is a set of one or more ascii source files. Here’s a brief
description of this Metamath database (which consists of this single source
file), so that you can understand in general terms what is going on. To
understand the source file in detail, you should read Chapter 4.

The database is a sequence of “tokens,” which are normally separated by
spaces or carriage returns. The only tokens that are built into the Metamath
language are those beginning with $. These tokens are called “keywords.”
All other tokens are user-defined, and their names are arbitrary.

As you might have guessed, the Metamath token $(starts a comment
and $) ends a comment.

The Metamath tokens $c, $v, $e, $f, $a, and $p specify “statements”
that end with $. .

The Metamath tokens $c and $v each declare a list of user-defined tokens,
called “math symbols,” that the database will reference later on. All of the
math symbols they define you have seen earlier except the turnstile symbol
|- (`), which is commonly used by logicians to mean “a proof exists for.”
For us the turnstile is just a convenient symbol that distinguishes expressions
that are axioms or theorems from expressions that are terms or wffs.

The $c statement declares “constants” and the $v statement declares

2.2. YOUR FIRST FORMAL SYSTEM 39

“variables” (or more precisely, metavariables). A variable may be substi-
tuted with sequences of math symbols whereas a constant may not be sub-
stituted with anything.

It may seem redundant to require both $c and $v statements (since any
math symbol not specified with a $c statement could be presumed to be a
variable), but this provides for better error checking and also allows math
symbols to be redeclared (Section 4.2.8).

The token $f specifies a statement called a “variable-type hypothesis”
(also called a “floating hypothesis”) and $e specifies a “logical hypothesis”
(also called an “essential hypothesis”). The token $a specifies an “axiomatic
assertion,” and $p specifies a “provable assertion.” To the left of each oc-
currence of these four tokens is a “label” that identifies the hypothesis or
assertion for later reference. For example, the label of the first axiomatic
assertion is tze. A $f statement must contain exactly two math symbols,
a constant followed by a variable. The $e, $a, and $p statements each
start with a constant followed by, in general, an arbitrary sequence of math
symbols.

Associated with each assertion is a set of hypotheses that must be sat-
isfied in order for the assertion to be used in a proof. These are called the
“mandatory hypotheses” of the assertion. Among those hypotheses whose
“scope” (described below) includes the assertion, $e hypotheses are always
mandatory and $f hypotheses are mandatory when they share their vari-
able with the assertion or its $e hypotheses. The exact rules for determining
which hypotheses are mandatory are described in detail in Sections 4.2.7 and
4.2.8. For example, the mandatory hypotheses of assertion tpl are tt and
tr, whereas assertion tze has no mandatory hypotheses because it contains
no variables and has no $e hypothesis. Metamath’s show statement com-
mand, described in the next section, will show you a statement’s mandatory
hypotheses.

Sometimes we need to make a hypothesis relevant to only certain asser-
tions. The set of statements to which a hypothesis is relevant is called its
“scope.” The Metamath brackets, ${ and $}, define a “block” that delimits
the scope of any hypothesis contained between them. The assertion mp has
mandatory hypotheses wp, wq, min, and maj. The only mandatory hypoth-
esis of th1, on the other hand, is tt, since th1 occurs outside of the block
containing min and maj.

Note that ${ and $} do not affect the scope of assertions ($a and $p).
Assertions are always available to be referenced by any later proof in the
source file.

Each provable assertion ($p statement) has two parts. The first part
is the assertion itself, which is a sequence of math symbol tokens placed
between the $p token and a $= token. The second part is a “proof,” which is
a list of label tokens placed between the $= token and the $. token that ends

40 CHAPTER 2. USING THE METAMATH PROGRAM

the statement.6 The proof acts as a series of instructions to the Metamath
program, telling it how to build up the sequence of math symbols contained
in assertion part of the $p statement, making use of the hypotheses of the $p
statement and previous assertions. The construction takes place according
to precise rules. If the list of labels in the proof causes these rules to be
violated, or if the final sequence that results does not match the assertion,
the Metamath program will notify you with an error message.

If you are familiar with reverse Polish notation (RPN), which is some-
times used on pocket calculators, here in a nutshell is how a proof works.
Each hypothesis label in the proof is pushed onto the RPN stack as it is
encountered. Each assertion label pops off the stack as many entries as the
referenced assertion has mandatory hypotheses. Variable substitutions are
computed which, when made to the referenced assertion’s mandatory hy-
potheses, cause these hypotheses to match the stack entries. These same
substitutions are then made to the variables in the referenced assertion it-
self, which is then pushed onto the stack. At the end of the proof, there
should be one stack entry, namely the assertion being proved. This process
is explained in detail in Section 4.3.

Metamath’s proof notation is not very readable for humans, but it allows
the proof to be stored compactly in a file. The Metamath program has proof
display features that let you see what’s going on in a more readable way, as
you will see in the next section.

The rules used in verifying a proof are not based on any built-in syntax of
the symbol sequence in an assertion nor on any built-in meanings attached
to specific symbol names. They are based strictly on symbol matching: con-
stants must match themselves, and variables may be replaced with anything
that allows a match to occur. For example, instead of term, 0, and |- we
could have just as well used yellow, zero, and provable, as long as we
did so consistently throughout the database. Also, we could have used is

provable (two tokens) instead of |- (one token) throughout the database.
In each of these cases, the proof would be exactly the same. The inde-
pendence of proofs and notation means that you have a lot of flexibility to
change the notation you use without having to change any proofs.

2.3 A Trial Run

Now you are ready to try out the Metamath program.
On all computer systems, Metamath has a standard “command line in-

terface” (CLI) that allows you to interact with it. You supply commands
to the CLI by typing them on the keyboard and pressing your keyboard’s

6If you’ve looked at the set.mm database, you may have noticed another notation used
for proofs. The other notation is called “compressed.” It reduces the amount of space
needed to store a proof in the database and is described in Appendix B. In the example
above, we use “normal” notation.

2.3. A TRIAL RUN 41

return key after each line you enter. The CLI is designed to be easy to use
and has built-in help features.

The first thing you should do is to use a text editor to create a file called
demo0.mm and type into it the Metamath source shown on p. 37. Actually,
this file is included with your Metamath software package, so check that
first. If you type it in, make sure that you save it in the form of “plain ascii
text with line breaks.” Most word processors will have this feature.

Next you must run the Metamath program. Depending on your com-
puter system and how Metamath is installed, this could range from clicking
the mouse on the Metamath icon to typing run metamath to typing simply
metamath. (Metamath’s help invoke command describes alternate ways of
invoking the Metamath program.)

When you first enter Metamath, it will be at the CLI, waiting for your
input. You will see the following on your screen:

Metamath - Version 0.07.30 8-Feb-2007

Type HELP for help, EXIT to exit.

MM>

The MM> prompt means that Metamath is waiting for a command. (The
help message line suggests that commands should be typed in upper case,
but actually command keywords are not case sensitive. We will use lower
case in our examples.)

The first thing that you need to do is to read in your database:7

MM> read demo0.mm

Remember to press the return key after entering this command. If you omit
the file name, Metamath will prompt you for one. The syntax for specifying
a Macintosh file name path is given in a footnote on p. 123.

If there are any syntax errors in the database, Metamath will let you
know when it reads in the file. The one thing that Metamath does not
check when reading in a database is that all proofs are correct, because this
would slow it down too much. It is a good idea to periodically verify the
proofs in a database you are making changes to. To do this, use the following
command (and do it for your demo0.mm file now). Note that the * is a “wild
card” meaning all proofs in the file.

MM> verify proof *

Metamath will report any proofs that are incorrect.
It is often useful to save the information that the Metamath program

displays on the screen. You can save everything that happens on the screen
by opening a log file. You may want to do this before you read in a database
so that you can examine any errors later on. To open a log file, type

7If a directory path is needed on Unix, you should enclose the path/file name in quotes
to prevent Metamath from thinking that the / in the path name is a command qualifier,
e.g., read "db/set.mm". Quotes are optional when there is no ambiguity.

42 CHAPTER 2. USING THE METAMATH PROGRAM

MM> open log abc.log

This will open a file called abc.log, and everything that appears on the
screen from this point on will be stored in this file. The name of the log file
is arbitrary. To close the log file, type

MM> close log

Several commands let you examine what’s inside of your database. Sec-
tion 3.8 has an overview of some useful ones. The show labels command
lets you see what statement labels exist. A * matches any combination of
characters, and t* refers to all labels starting with the letter t. The /all is
a “command qualifier” that tells Metamath to include labels of hypotheses.
(To see the syntax explained, type help show labels.) Type

MM> show labels t* /all

Metamath will respond with

The statement number, label, and type are shown.

3 tt $f 4 tr $f 5 ts $f 8 tze $a

9 tpl $a 19 th1 $p

You can use the show statement command to get information about
a particular statement. For example, you can get information about the
statement with label mp by typing

MM> show statement mp /full

Metamath will respond with

Statement 17 is located on line 43 of the file

"demo0.mm".

"Define the modus ponens inference rule"

17 mp $a |- Q $.

Its mandatory hypotheses in RPN order are:

wp $f wff P $.

wq $f wff Q $.

min $e |- P $.

maj $e |- (P -> Q) $.

The statement and its hypotheses require the

variables: Q P

The variables it contains are: Q P

The mandatory hypotheses and their order are useful to know when you are
trying to understand or debug a proof.

Now you are ready to look at what’s really inside of our proof. First, here
is how to look at every step in the proof—not just the ones corresponding
to an ordinary formal proof, but also the ones that build up the formulas
that appear in each ordinary formal proof step.

2.3. A TRIAL RUN 43

MM> show proof th1 /lemmon /all

This will display the proof on the screen in the following format:

1 tt $f term t

2 tze $a term 0

3 1,2 tpl $a term (t + 0)

4 tt $f term t

5 3,4 weq $a wff (t + 0) = t

6 tt $f term t

7 tt $f term t

8 6,7 weq $a wff t = t

9 tt $f term t

10 9 a2 $a |- (t + 0) = t

11 tt $f term t

12 tze $a term 0

13 11,12 tpl $a term (t + 0)

14 tt $f term t

15 13,14 weq $a wff (t + 0) = t

16 tt $f term t

17 tze $a term 0

18 16,17 tpl $a term (t + 0)

19 tt $f term t

20 18,19 weq $a wff (t + 0) = t

21 tt $f term t

22 tt $f term t

23 21,22 weq $a wff t = t

24 20,23 wim $a wff ((t + 0) = t -> t = t)

25 tt $f term t

26 25 a2 $a |- (t + 0) = t

27 tt $f term t

28 tze $a term 0

29 27,28 tpl $a term (t + 0)

30 tt $f term t

31 tt $f term t

32 29,30,31 a1 $a |- ((t + 0) = t -> ((t + 0)

= t -> t = t))

33 15,24,26,32 mp $a |- ((t + 0) = t -> t = t)

34 5,8,10,33 mp $a |- t = t

The /lemmon command qualifier specifies what is known as a Lemmon-
style display. Omitting the /lemmon qualifier results in a tree-style proof (see
p. 117 for an example) that is somewhat less explicit but easier to follow
once you get used to it.

The first number on each line is the step number of the proof. Any
numbers that follow are step numbers assigned to the hypotheses of the

44 CHAPTER 2. USING THE METAMATH PROGRAM

statement referenced by that step. Next is the label of the statement refer-
enced by the step. The statement type of the statement referenced comes
next, followed by the math symbol string constructed by the proof up to
that step.

The last step, 34, contains the statement that is being proved.
Looking at a small piece of the proof, notice that steps 3 and 4 have

established that (t + 0) and t are term s, and step 5 makes use of steps
3 and 4 to establish that (t + 0) = t is a wff. Let us let Metamath
itself tell us in detail what is happening in step 5. Note that the “target
hypothesis” refers to where step 5 is eventually used, i.e., in step 34.

MM> show proof th1 /detailed_step 5

Proof step 5: wp=weq $a wff (t + 0) = t

This step assigns source "weq" ($a) to target "wp"

($f). The source assertion requires the hypotheses

"tt" ($f, step 3) and "tr" ($f, step 4). The parent

assertion of the target hypothesis is "mp" ($a,

step 34).

The source assertion before substitution was:

weq $a wff t = r

The following substitutions were made to the source

assertion:

Variable Substituted with

t (t + 0)

r t

The target hypothesis before substitution was:

wp $f wff P

The following substitution was made to the target

hypothesis:

Variable Substituted with

P (t + 0) = t

The full proof just shown is useful to understand what is going on in de-
tail. However, most of the time you will just be interested in the “essential”
or logical steps of a proof, i.e. those steps that correspond to an ordinary
formal proof. If you type

MM> show proof th1 /essential /lemmon /renumber

you will see

1 a2 $a |- (t + 0) = t

2 a2 $a |- (t + 0) = t

3 a1 $a |- ((t + 0) = t -> ((t + 0)

= t -> t = t))

4 2,3 mp $a |- ((t + 0) = t -> t = t)

5 1,4 mp $a |- t = t

2.3. A TRIAL RUN 45

Compare this to the formal proof on p. 35 and notice the resemblance. The
/essential qualifier in the show proof command tells Metamath to dis-
card all $f hypotheses and everything branching off of them in the proof tree
when the proof is displayed; this makes the proof look more like an ordinary
mathematical proof, which does not normally incorporate the explicit con-
struction of expressions. The /renumber qualifier means to renumber the
steps to correspond only to what is displayed.

To exit Metamath, type

MM> exit

2.3.1 Some Hints for Using the Command Line Inter-
face

We will conclude this quick introduction to Metamath with some helpful
hints on how to navigate your way through the commands.

When you type commands into Metamath’s CLI, you only have to type
as many characters of a command keyword as are needed to make it un-
ambiguous. If you type too few characters, Metamath will tell you what
the choices are. In the case of the read command, only the r is needed to
specify it unambiguously, so you could have typed

MM> r demo0.mm

instead of

MM> read demo0.mm

In our description, we always show the full command words. When using the
Metamath CLI commands in a command file (to be read with the submit

command), it is good practice to use the unabbreviated command to ensure
your instructions will not become ambiguous if more commands are added
to the Metamath program in the future.

The command keywords are not case sensitive; you may type either read
or ReAd. File names may or may not be case sensitive, depending on your
computer’s operating system. Metamath label and math symbol tokens are
case-sensitive.

The help command will provide you with a list of topics you can get
help on. You can then type help topic to get help on that topic.

If you are uncertain of a command’s spelling, just type as many char-
acters as you remember of the command. If you have not typed enough
characters to specify it unambiguously, Metamath will tell you what choices
you have.

MM> show s

^

?Ambiguous keyword - please specify SETTINGS,

STATEMENT, or SOURCE.

46 CHAPTER 2. USING THE METAMATH PROGRAM

If you don’t what know argument to use as part of a command, type a
? at the argument position. Metamath will tell you what it expected there.

MM> show ?

^

?Expected SETTINGS, LABELS, STATEMENT, SOURCE, PROOF,

MEMORY, TRACE_BACK, or USAGE.

Finally, you may type just the first word or words of a command followed
by return. Metamath will prompt you for the remaining part of the com-
mand, showing you the choices at each step. For example, instead of typing
show statement th1 /full you could interact in the following manner:

MM> show

SETTINGS, LABELS, STATEMENT, SOURCE, PROOF,

MEMORY, TRACE_BACK, or USAGE <SETTINGS>? st

What is the statement label <th1>?

/ or nothing <nothing>? /

TEX, COMMENT_ONLY, or FULL <TEX>? f

/ or nothing <nothing>?

19 th1 $p |- t = t $= ... $.

After each ? in this mode, you must give Metamath the information it
requests. Sometimes Metamath gives you a list of choices with the default
choice indicated by brackets < > . Pressing return after the ? will select the
default choice. Answering anything else will override the default. Note that
the / in command qualifiers is considered a separate token by the parser,
and this is why it is asked for separately.

2.4 Your First Proof

Proofs are developed with the aid of the Proof Assistant. We will now show
you how the proof of theorem th1 was built. So that you can repeat these
steps, we will first have the Proof Assistant erase the proof in Metamath’s
source buffer, then reconstruct it. (The source buffer is the place in memory
where Metamath stores the information in the database when it is read

in. New or modified proofs are kept in the source buffer until a write

source command is issued.) In practice, you would place a ? between $=

and $. in the database to indicate to Metamath that the proof is unknown,
and that would be your starting point. Whenever verify proof command
encounters a proof with a ? in place of a proof step, the statement is identified
as not proved.

Before you start, you should write down on a piece of paper the complete
formal proof as it would appear with the /essential qualifier in a show

proof command; see the display of show proof th1 /essential /lemmon

2.4. YOUR FIRST PROOF 47

/renumber above as an example. After you get used to using the Proof
Assistant you may get to a point where you can “see” the proof in your
mind and let the Proof Assistant guide you in filling in the details, at least
for simpler proofs, but until you gain that experience it is important to write
down all the details in advance. Otherwise you may waste a lot of time as
you let it take you down a wrong path.

A proof is developed with the Proof Assistant by working backwards,
starting with the theorem to be proved, and assigning each unknown step
with a theorem or hypothesis until no more unknown steps remain. The
Proof Assistant will not let you make an assignment unless it can be “uni-
fied” with the unknown step. This means that a substitution of variables
exists that will make the assignment match the unknown step. On the other
hand, in the middle of a proof, when working backwards, often more than
one unification (set of substitutions) is possible, since there is not enough
information available at that point to uniquely establish it. In this case you
can tell Metamath which unification to choose, or you can continue to assign
unknown steps until enough information is available to make the unification
unique.

We will assume you have entered Metamath and read in the database as
described above. The following dialog shows how the proof was developed.
For more details on what some of the commands do, refer to Section 5.6.

MM> prove th1

Entering the Proof Assistant. Type HELP for help, EXIT

to exit. You will be working on the proof of statement th1:

$p |- t = t

Note: The proof you are starting with is already complete.

MM-PA>

The MM-PA> prompt means we are inside of the Proof Assistant. Most of
the regular Metamath commands (show statement, etc.) are still available
if you need them.

MM-PA> delete all

The entire proof was deleted.

We have deleted the whole proof so we can start from scratch.

MM-PA> show new_proof/lemmon/all

1 ? $? |- t = t

The show new_proof command is like show proof except that we don’t
specify a statement; instead, the proof we’re working on is displayed.

MM-PA> assign 1 mp

To undo the assignment, DELETE STEP 5 and INITIALIZE, UNIFY

48 CHAPTER 2. USING THE METAMATH PROGRAM

if needed.

3 min=? $? |- $2

4 maj=? $? |- ($2 -> t = t)

The assign command above means “assign step 1 with the statement
whose label is mp.” Note that step renumbering will constantly occur as you
assign steps in the middle of a proof; in general all steps from the step you
assign until the end of the proof will get moved up. In this case, what used
to be step 1 is now step 5, because the (partial) proof now has five steps:
the four hypotheses of the mp statement and the mp statement itself. Let’s
look at all the steps in our partial proof:

MM-PA> show new_proof/lemmon/all

1 ? $? wff $2

2 ? $? wff t = t

3 ? $? |- $2

4 ? $? |- ($2 -> t = t)

5 1,2,3,4 mp $a |- t = t

The symbol $2 is a temporary variable that represents a symbol sequence
not yet known. In the final proof, all temporary variables will be eliminated.
The general format for a temporary variable is $ followed by an integer. Note
that $ is not a legal character in a math symbol (see Section 4.2.1, p. 97), so
there will never be a naming conflict between real symbols and temporary
variables.

Unknown steps 1 and 2 are constructions of the two wffs used by the
modus ponens rule. As you will see at the end of this section, the Proof
Assistant can usually figure these steps out by itself, and we will not have
to worry about them. Therefore from here on we will display only the
“essential” hypotheses, i.e. those steps that correspond to traditional formal
proofs.

MM-PA> show new_proof/lemmon/essential

3 ? $? |- $2

4 ? $? |- ($2 -> t = t)

5 3,4 mp $a |- t = t

Unknown steps 3 and 4 are the ones we must focus on. They correspond
to the minor and major premises of the modus ponens rule. We will assign
them as follows. Notice that because of the step renumbering that takes
place after an assignment, it is advantageous to assign unknown steps in
reverse order, because earlier steps will not get renumbered.

MM-PA> assign 4 mp

To undo the assignment, DELETE STEP 8 and INITIALIZE, UNIFY

if needed.

2.4. YOUR FIRST PROOF 49

3 min=? $? |- $2

6 min=? $? |- $4

7 maj=? $? |- ($4 -> ($2 -> t = t))

We are now going to describe an obscure feature that you will probably
never use but should be aware of. The Metamath language allows empty
symbol sequences to be substituted for variables, but in most formal systems
this feature is never used. One of the few examples where is it used is the
MIU-system described in Appendix D. But such systems are rare, and by
default this feature is turned off in the Proof Assistant. (It is always allowed
for verify proof.) Let us turn it on and see what happens.

MM-PA> set empty_substitution on

Substitutions with empty symbol sequences is now allowed.

With this feature enabled, more unifications will be ambiguous in the
middle of a proof, because substitution of variables with empty symbol se-
quences will become an additional possibility. Let’s see what happens when
we make our next assignment.

MM-PA> assign 3 a2

There are 2 possible unifications. Please select the correct

one or Q if you want to UNIFY later.

Unify: |- $6

with: |- ($9 + 0) = $9

Unification #1 of 2 (weight = 7):

Replace "$6" with "(+ 0) ="

Replace "$9" with ""

Accept (A), reject (R), or quit (Q) <A>? r

The first choice presented is the wrong one. If we had selected it, tempo-
rary variable $6 would have been assigned a truncated wff, and temporary
variable $9 would have been assigned an empty sequence (which is not al-
lowed in our system). With this choice, eventually we would reach a point
where we would get stuck because we would end up with steps impossible
to prove. (You may want to try it.) We typed r to reject the choice.

Unification #2 of 2 (weight = 21):

Replace "$6" with "($9 + 0) = $9"

Accept (A), reject (R), or quit (Q) <A>? q

To undo the assignment, DELETE STEP 4 and INITIALIZE, UNIFY

if needed.

7 min=? $? |- $8

8 maj=? $? |- ($8 -> ($6 -> t = t))

The second choice is correct, and normally we would type a to accept
it. But instead we typed q to show what will happen: it will leave the step
with an unknown unification, which can be seen as follows:

50 CHAPTER 2. USING THE METAMATH PROGRAM

MM-PA> show new_proof/not_unified

4 min $a |- $6

=a2 = |- ($9 + 0) = $9

Later we can unify this with the unify all/interactive command.
The important point to remember is that occasionally you will be pre-

sented with several unification choices while entering a proof, when the
program determines that there is not enough information yet to make an
unambiguous choice automatically (and this can happen even with set

empty_substitution turned off). Usually it is obvious by inspection which
choice is correct, since incorrect ones will tend to be meaningless fragments
of wffs. In addition, the correct choice will usually be the first one presented,
unlike our example above.

Enough of this digression. Let us go back the the default setting.

MM-PA> set empty_substitution off

The ability to substitute empty expressions for variables

has been turned off. Note that this may make the Proof

Assistant too restrictive in some cases.

If we delete the proof, start over, and get to the point where we digressed
above, there will no longer be an ambiguous unification.

MM-PA> assign 3 a2

To undo the assignment, DELETE STEP 4 and INITIALIZE, UNIFY

if needed.

7 min=? $? |- $4

8 maj=? $? |- ($4 -> (($5 + 0) = $5 -> t = t))

Let us look at our proof so far, and continue.

MM-PA> show new_proof/lemmon

4 a2 $a |- ($5 + 0) = $5

7 ? $? |- $4

8 ? $? |- ($4 -> (($5 + 0) = $5 -> t = t))

9 7,8 mp $a |- (($5 + 0) = $5 -> t = t)

10 4,9 mp $a |- t = t

MM-PA> assign 8 a1

To undo the assignment, DELETE STEP 11 and INITIALIZE, UNIFY

if needed.

7 min=? $? |- (t + 0) = t

MM-PA> assign 7 a2

To undo the assignment, DELETE STEP 8 and INITIALIZE, UNIFY

if needed.

MM-PA> show new_proof/lemmon

4 a2 $a |- (t + 0) = t

2.4. YOUR FIRST PROOF 51

8 a2 $a |- (t + 0) = t

12 a1 $a |- ((t + 0) = t -> ((t + 0) = t ->

t = t))

13 8,12 mp $a |- ((t + 0) = t -> t = t)

14 4,13 mp $a |- t = t

Now all temporary variables and unknown steps have been eliminated
from the “essential” part of the proof. When this is achieved, the Proof
Assistant can usually figure out the rest of the proof automatically. (Note
that the improve command can occasionally be useful for filling in essential
steps as well, but it only tries to make use of statements that introduce no
new variables in their hypotheses, which is not the case for mp. Also it will
not try to improve steps containing temporary variables.) Let’s look at the
complete proof, then run the improve command, then look at it again.

MM-PA> show new_proof/lemmon/all

1 ? $? wff (t + 0) = t

2 ? $? wff t = t

3 ? $? term t

4 3 a2 $a |- (t + 0) = t

5 ? $? wff (t + 0) = t

6 ? $? wff ((t + 0) = t -> t = t)

7 ? $? term t

8 7 a2 $a |- (t + 0) = t

9 ? $? term (t + 0)

10 ? $? term t

11 ? $? term t

12 9,10,11 a1 $a |- ((t + 0) = t -> ((t + 0) = t ->

t = t))

13 5,6,8,12 mp $a |- ((t + 0) = t -> t = t)

14 1,2,4,13 mp $a |- t = t

MM-PA> improve all

A proof of length 1 was found for step 11.

A proof of length 1 was found for step 10.

A proof of length 3 was found for step 9.

A proof of length 1 was found for step 7.

A proof of length 9 was found for step 6.

A proof of length 5 was found for step 5.

A proof of length 1 was found for step 3.

A proof of length 3 was found for step 2.

A proof of length 5 was found for step 1.

Steps 1 and above have been renumbered.

CONGRATULATIONS! The proof is complete. Use SAVE

NEW_PROOF to save it. Note: The Proof Assistant does

52 CHAPTER 2. USING THE METAMATH PROGRAM

not detect $d violations. After saving the proof, you

should verify it with VERIFY PROOF.

The save new_proof command will save the proof in the database. Here
we will just display it in a form that can be clipped out of a log file and
inserted manually into the database source file with a text editor.

MM-PA> show new_proof/normal

---------Clip out the proof below this line:

tt tze tpl tt weq tt tt weq tt a2 tt tze tpl tt weq

tt tze tpl tt weq tt tt weq wim tt a2 tt tze tpl tt

tt a1 mp mp $.

---------The proof of ’th1’ to clip out ends above this line.

There is another proof format called “compressed” that you will see
in databases. It is not important to understand how it is encoded but
only to recognize it when you see it. Its only purpose is to reduce storage
requirements for large proofs. A compressed proof can always be converted
to a normal one and vice-versa, and the Metamath show proof commands
work equally well with compressed proofs. The compressed proof format is
described in Appendix B.

MM-PA> show new_proof/compressed

---------Clip out the proof below this line:

(tze tpl weq a2 wim a1 mp) ABCZADZAADZAEZJJKFLIA

AGHH $.

---------The proof of ’th1’ to clip out ends above this line.

Now we will exit the Proof Assistant. Since we made changes to the
proof, it will warn us that we have not saved it. In this case, we don’t care.

MM-PA> exit

Warning: You have not saved changes to the proof.

Do you want to EXIT anyway (Y, N) <N>? y

Exiting the Proof Assistant.

Type EXIT again to exit Metamath.

The Proof Assistant has several other commands that can help you while
creating proofs. See Section 5.6 for a list of them.

A command that is often useful is minimize_with */brief, which tries
to shorten the proof. It can make the process more efficient by letting you
write a somewhat “sloppy” proof then clean up some of the fine details of op-
timization for you (although it can’t perform miracles such as restructuring
the overall proof).

2.5. A NOTE ABOUT EDITING A DATABASE FILE 53

2.5 A Note About Editing a Database File

Once your source file contains proofs, there are some restrictions on how
you can edit it so that the proofs remain valid. Pay particular attention to
these rules, since otherwise you can lose a lot of work. It is a good idea to
periodically verify all proofs with verify proof * to ensure their integrity.

If your file contains only normal (as opposed to compressed) proofs, the
main rule is that you may not change the order of the mandatory hypotheses
of any statement referenced in a later proof. For example, if you swap
the order of the major and minor premise in the modus ponens rule, all
proofs making use of that rule will become incorrect. The show statement

command will show you the mandatory hypotheses of a statement and their
order.

If a statement has a compressed proof, you also must not change the
order of its mandatory hypotheses. The compressed proof format makes
use of this information as part of the compression technique. Note that
swapping the names of two variables in a theorem will change the order of
its mandatory hypotheses.

The safest way to edit a statement, say mytheorem, is to duplicate it
then rename the original to mytheoremOLD throughout the database. Once
the edited version is re-proved, all statements referencing mytheoremOLD

can be updated in the Proof Assistant using minimize_with mytheorem

/allow_growth.

54 CHAPTER 2. USING THE METAMATH PROGRAM

Chapter 3

Abstract Mathematics
Revealed

3.1 Logic and Set Theory

Set theory can be viewed as a form of exact theology.

Rudy Rucker1

Despite its seeming complexity, all of standard mathematics, no matter
how deep or abstract, can amazingly enough be derived from a relatively
small set of axioms or first principles. The development of these axioms is
among the most impressive and important accomplishments of mathematics
in the 20th century. Ultimately, these axioms can be broken down into a set
of rules for manipulating symbols that any technically oriented person can
follow.

We will not spend much time trying to convey a deep, higher-level under-
standing of the meaning of the axioms. This kind of understanding requires
some mathematical sophistication as well as an understanding of the phi-
losophy underlying the foundations of mathematics and typically develops
over time as you work with mathematics. Our goal, instead, is to give you
the immediate ability to follow how theorems are derived from the axioms
and from other theorems. This will be similar to learning the syntax of a
computer language, which lets you follow the details in a program but does
not necessarily give you the ability to write non-trivial programs on your
own, an ability that comes with practice. For now don’t be alarmed by
abstract-sounding names of the axioms; just focus on the rules for manip-
ulating the symbols, which follow the simple conventions of the Metamath
language.

1[3], p. 31

55

56 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

The axioms that underlie all of standard mathematics consist of axioms
of logic and axioms of set theory. The axioms of logic are divided into two
subcategories, propositional calculus (sometimes called sentential logic) and
predicate calculus (sometimes called first-order logic or quantifier theory).
Propositional calculus is a prerequisite for predicate calculus, and predicate
calculus is a prerequisite for set theory. The version of set theory most
commonly used is Zermelo-Fraenkel set theory.

Here in a nutshell is what the axioms are all about in an informal way.
The connection between this description and symbols we will show you won’t
be immediately apparent and in principle needn’t ever be. Our description
just tries to summarize what mathematicians think about when they work
with the axioms.

Logic is more or less the translation of what we would consider common
sense into a rigorous set of axioms. Suppose ϕ, ψ, and χ (the Greek letters
phi, psi, and chi) represent statements that are either true or false, and x is
a variable ranging over some group of mathematical objects (sets, integers,
real numbers, etc.). In mathematics, a “statement” really means a formula,
and ψ could be for example “x = 2.” Logic makes assertions such as “if ϕ
implies ψ and ψ implies χ, then ϕ implies χ” (propositional calculus) and
“if ϕ is true for all x, then ϕ is true for some x” (predicate calculus).

Set theory has to do with the manipulation of objects and collections of
objects, specifically the abstract, imaginary objects that mathematics deals
with, such as numbers. Everything that is claimed to exist in mathematics
is considered to be a set. A set called the empty set contains nothing. We
represent the empty set by ∅. Many sets can be built up from the empty
set. There is a set represented by {∅} that contains the empty set, another
set represented by {∅, {∅}} that contains this set as well as the empty set,
another set represented by {{∅}} that contains just the set that contains
the empty set, and so on ad infinitum. All mathematical objects, no matter
how complex, are defined as being identical to certain sets: the integer 0
is defined as the empty set, the integer 1 is defined as {∅}, the integer 2
is defined as {∅, {∅}}. (How these definitions were chosen doesn’t matter
now, but the idea behind it is that these sets have the properties we expect
of integers once suitable operations are defined.) Mathematical operations,
such as addition, are defined in terms of operations on sets—their union,
intersection, and so on—operations you may have used in elementary school
when you worked with groups of apples and oranges.

With a leap of faith, the axioms also postulate the existence of infinite
sets, such as the set of all non-negative integers (0, 1, 2, . . ., also called “natu-
ral numbers”). This set can’t be represented with the brace notation we just
showed you, but requires a more complicated notation called “class abstrac-
tion.” For example, the infinite set {x|“x is a natural number”} means the
“set of all objects x such that x is a natural number” i.e. the set of natural
numbers; here, “x is a natural number” is a rather complicated formula when

3.1. LOGIC AND SET THEORY 57

broken down into the primitive symbols.2 Actually, the primitive symbols
don’t even include the brace notation. The brace notation is a high-level
definition, which you can find in Section 3.4.

Interestingly, the arithmetic of integers and rationals can be developed
without appealing to the existence of an infinite set, whereas the arithmetic
of real numbers requires it.

Each variable in the axioms of set theory represents an arbitrary set, and
the axioms specify the legal kinds of things you can do with these variables
at a very primitive level.

Now, you may think that numbers and arithmetic are a lot more intu-
itive and fundamental than sets and therefore should be the foundation of
mathematics. What is really the case is that you’ve dealt with numbers all
your life and are comfortable with a few rules for manipulating them such
as addition and multiplication. Those rules only cover a small portion of
what can be done with numbers and only a very tiny fraction of the rest of
mathematics. If you look at any elementary book on number theory, you will
quickly become lost if these are the only rules that you know. Even though
such books may present a list of “axioms” for arithmetic, the ability to use
the axioms and to understand proofs of theorems (facts) about numbers
requires an implicit mathematical talent that frustrates many people from
studying abstract mathematics. The kind of mathematics that most people
know limits them to the practical, everyday usage of blindly manipulating
numbers and formulas, without any understanding of why those rules are
correct nor any ability to go any further. For example, do you know why
multiplying two negative numbers yields a positive number? Starting with
set theory, you will also start off blindly manipulating symbols according
to the rules we give you, but with the advantage that these rules will allow
you, in principle, to access all of mathematics, not just a tiny part of it.

Of course, concrete examples are often helpful in the learning process.
For example, you can verify that that 2 · 3 = 3 · 2 by actually grouping
objects and can easily “see” how it generalizes to x · y = y · x, even though
you might not be able to rigorously prove it. Similarly, in set theory it can
be helpful to understand how the axioms of set theory apply to (and are
correct for) small finite collections of objects. You should be aware that in

2The statement “x is a natural number” is formally expressed as “x ∈ ω,” where ∈
(stylized epsilon) means “is in” or “is an element of” and ω (omega) means “the set
of natural numbers.” When “x ∈ ω” is completely expanded in terms of the primitive
symbols of set theory, the result is ¬ (¬ (∀ z (¬ ∀ w (z ∈ w → ¬ w ∈ x) → z ∈ x)
→ (∀ z (¬ (∀ w (w ∈ z → w ∈ x) → ∀ w ¬ w ∈ z) → ¬ ∀ w (w ∈ z → ¬ ∀ v (v ∈
z → ¬ v ∈ w))) → ¬ ∀ z ∀ w (¬ (z ∈ x → ¬ w ∈ x) → (¬ z ∈ w → (¬ z = w →
w ∈ z))))) → ¬ ∀ y (¬ (¬ (∀ z (¬ ∀ w (z ∈ w → ¬ w ∈ y) → z ∈ y) → (∀ z (
¬ (∀ w (w ∈ z → w ∈ y) → ∀ w ¬ w ∈ z) → ¬ ∀ w (w ∈ z → ¬ ∀ v (v ∈ z → ¬ v
∈ w))) → ¬ ∀ z ∀ w (¬ (z ∈ y → ¬ w ∈ y) → (¬ z ∈ w → (¬ z = w → w ∈ z))
)) → (∀ z ¬ z ∈ y → ¬ ∀ w (¬ (w ∈ y → ¬ ∀ z (w ∈ z → ¬ z ∈ y)) → ¬ (¬ ∀ z
(w ∈ z → ¬ z ∈ y) → w ∈ y)))) → x ∈ y))). Section 3.4 shows the hierarchy of
definitions that leads up to this expression.

58 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

set theory intuition can be misleading for infinite collections, and rigorous
proofs become more important. For example, while x · y = y · x is correct
for finite ordinals (which are the natural numbers), it is not usually true for
infinite ordinals.

3.2 The Axioms for All of Mathematics

In this section, we will show you the axioms for all of standard mathematics
(i.e. logic and set theory) as they are traditionally presented. The tradi-
tional presentation is useful for someone with the mathematical experience
needed to correctly manipulate high-level abstract concepts. For someone
without this talent, knowing how to actually make use of these axioms can
be difficult. The purpose of this section is to allow you to see how the ver-
sion of the axioms used in the standard Metamath database set.mm relates
to the typical version in textbooks, and also to give you an informal feel for
them.

3.2.1 Propositional Calculus

Propositional calculus concerns itself with statements that can be inter-
preted as either true or false. Some examples of statements (outside of
mathematics) that are either true or false are “It is raining today” and “The
United States has a female president.” In mathematics, as we mentioned,
statements are really formulas.

In propositional calculus, we don’t care what the statements are. We also
treat a logical combination of statements, such as “It is raining today and the
United States has a female president,” no differently from a single statement.
Statements and their combinations are called well-formed formulas (wffs).
We define wffs only in terms of other wffs and don’t define what a “starting”
wff is. As is common practice in the literature, we use Greek letters to
represent wffs.

Specifically, suppose ϕ and ψ are wffs. Then the combinations ϕ → ψ
(“ϕ implies ψ,” also read “if ϕ then ψ”) and ¬ϕ (“not ϕ”) are also wffs.

The three axioms of propositional calculus are all wffs of the following
form:3

ϕ→ (ψ → ϕ)
(ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ))

(¬ϕ→ ¬ψ)→ (ψ → ϕ)

There are an infinite number of axioms, one for each possible wff of
the above form. (For this reason, axioms such as the above are often called

3A remarkable result of C. A. Meredith squeezes these three axioms into the single
axiom ((((ϕ → ψ) → (¬χ → ¬θ)) → χ) → τ) → ((τ → ϕ) → (θ → ϕ)) [37], which is
believed to be the shortest possible.

3.2. THE AXIOMS FOR ALL OF MATHEMATICS 59

“axiom schemes.”) Each Greek letter in the axioms may be substituted with
a more complex wff to result in another axiom. For example, substituting
¬(ϕ → χ) for ϕ in the first axiom yields ¬(ϕ → χ) → (ψ → ¬(ϕ → χ)),
which is still an axiom.

To deduce new true statements (theorems) from the axioms, a rule called
“modus ponens” is used. This rule states that if the wff ϕ is an axiom or
a theorem, and the wff ϕ → ψ is an axiom or a theorem, then the wff ψ is
also a theorem.

As a non-mathematical example of modus ponens, suppose we have
proved (or taken as an axiom) “Bob is a man” and separately have proved
(or taken as an axiom) “If Bob is a man, then Bob is a human.” Using the
rule of modus ponens, we can logically deduce, “Bob is a human.”

From Metamath’s point of view, the axioms and the rule of modus po-
nens just define a mechanical means for deducing new true statements from
existing true statements, and that is the complete content of propositional
calculus as far as Metamath is concerned. You can read a logic textbook
to gain a better understanding of their meaning, or you can just let their
meaning slowly become apparent to you after you use them for a while.

It is actually rather easy to check to see if a formula is a theorem of
propositional calculus. Theorems of propositional calculus are also called
“tautologies.” The technique to check whether a formula is a tautology is
called the “truth table method,” and it works like this. A wff ϕ → ψ is
false whenever ϕ is true and ψ is false. Otherwise it is true. A wff ¬ϕ is
false whenever ϕ is true and false otherwise. To verify a tautology such as
ϕ → (ψ → ϕ), you break it down into sub-wffs and construct a truth table
that accounts for all possible combinations of true and false assigned to the
wff metavariables:

ϕ ψ ψ → ϕ ϕ→ (ψ → ϕ)

T T T T
T F T T
F T F T
F F T T

If all entries in the last column are true, the formula is a tautology.
Now, the truth table method doesn’t tell you how to prove the tautology

from the axioms, but only that a proof exists. Finding an actual proof
(especially one that is short and elegant) can be challenging. Methods do
exist for automatically generating proofs in propositional calculus, but the
proofs that result can sometimes be very long. In the Metamath set.mm

database, most or all proofs were created manually.

3.2.2 Predicate Calculus

Predicate calculus introduces the concept of “individual variables,” which
we will usually just call “variables.” These will always represent sets when

60 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

we get to set theory. There are also three new symbols ∀, =, and ∈, read
“for all,” “equals,” and “is an element of” respectively. We will represent
variables with the letters x, y, z, and w, as is common practice in the
literature.

To prevent confusion, it might be best at this point to think of the vari-
ables of Metamath as “metavariables,” because they are not quite the same
as the variables we are introducing here. A (meta)variable in Metamath
can be a wff or an individual variable, as well as many other things; in gen-
eral, it represents a kind of place holder for an unspecified sequence of math
symbols.

In predicate calculus, we extend the definition of a wff. If ϕ is a wff and
x and y are variables, then ∀xϕ, x = y, and x ∈ y are wffs. Note that
these three new types of wffs can be considered “starting” wffs from which
we can build other wffs with → and ¬ . The concept of a starting wff was
absent in propositional calculus. But starting wff or not, all we are really
concerned with is whether our wffs are correctly constructed according to
these mechanical rules.

In standard texts of logic, there are two axioms of predicate calculus:

∀xϕ(x)→ ϕ(y), where “y is properly substituted for x.”
∀x(ϕ→ ψ)→ (ϕ→ ∀xψ), where “x is not free in ϕ.”

Now at first glance, this seems simple: just two axioms. However, condi-
tional clauses are attached to each axiom describing requirements that may
seem puzzling to you. In addition, the first axiom puts a variable symbol
in parentheses after each wff, seemingly violating our definition of a wff;
this is just an informal way of referring to some arbitrary variable that may
occur in the wff. The conditional clauses do, of course, have a precise mean-
ing, but as it turns out the precise meaning is somewhat complicated and
awkward to formalize in a way that a computer can handle easily. Unlike
propositional calculus, a certain amount of mathematical sophistication and
practice is needed to be able to easily grasp and manipulate these concepts
correctly.

We take a different approach in the Metamath database set.mm. We do
not use the primitive notions of “free variable” and “proper substitution” at
all. Instead, we use a set of axioms that are almost as simple to manipulate as
those of propositional calculus. Our axiom system avoids complex primitive
notions by effectively embedding the complexity into the axioms themselves.
As a result, we will end up with a larger number of axioms, but they are
ideally suited for a computer language such as Metamath. (Section 3.3 shows
these axioms.)

We will not elaborate on the “free variable” and “proper substitution”
concepts here. We listed the two axioms above so that you will recognize
them when you encounter them in the literature. You may consult [19, ch. 3–
4] (as well as many other books) for a precise explanation of these concepts.
If you intend to do serious mathematical work, it is wise to become familiar

3.2. THE AXIOMS FOR ALL OF MATHEMATICS 61

with the traditional textbook approach; even though the concepts embedded
in their axioms require a higher level of sophistication, they can be more
practical to deal with on an everyday, informal basis. Even if you are just
developing Metamath proofs, familiarity with the traditional approach can
help you arrive at a proof outline much faster, which you can then convert
to the detail required by Metamath.

There is also a new rule of inference in predicate calculus: if ϕ is an
axiom or a theorem, then ∀xϕ is also a theorem. This is called the rule of
“generalization.”

Unlike propositional calculus, no decision procedure analogous to the
truth table method exists (nor theoretically can exist) that will definitely
determine whether a formula is a theorem of predicate calculus. Much of
the work in the field of automated theorem proving has been dedicated to
coming up with clever heuristics for proving theorems of predicate calculus,
but they can never be guaranteed to work always.

3.2.3 Equality

Predicate calculus may be presented with or without axioms for equality.
We will require the axioms of equality as a prerequisite for the version of
set theory we will use. In standard systems, the axioms for equality are the
following two:

x = x

x = y → (ϕ(x, x)→ ϕ(x, y)) where “ϕ(x, y) arises from ϕ(x, x) by
replacing some, but not necessarily all, free occurrences of x by y,

provided that y is free for x in φ(x, x).”

The first equality axiom is simple, but the condition on the second one is
somewhat awkward to implement on a computer. Again, the axiom system
we use in the set.mm database avoids the complexity of this condition by
effectively embedding the complexity into the axioms themselves.

3.2.4 Set Theory

Traditional Zermelo-Fraenkel set theory has 10 axioms, which can be ex-
pressed in the language of predicate calculus. In this section, we will list
only the names and brief English descriptions of these axioms, since we will
give you the precise formulas used by the Metamath set theory database
set.mm later on.

In the descriptions of the axioms, we assume that x, y, z, w, and v rep-
resent sets. These are the same as the variables in our predicate calculus
system above, except that now we informally think of the variables as rang-
ing over sets. Note that the terms “object,” “set,” “element,” “collection,”
and “family” are synonymous, as are “is an element of,” “is a member of,”

62 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

“is contained in,” and “belongs to.” The different terms are used for con-
venience; for example, “a collection of sets” is less confusing than “a set of
sets.” A set x is said to be a “subset” of y if every element of x is also an
element of y; we also say x is “included in” y.

The axioms are very general and apply to almost any conceivable math-
ematical object, and this level of abstraction can be overwhelming at first.
To gain an intuitive feel, it can be helpful to draw a picture illustrating the
concept; for example, a circle containing dots could represent a collection of
sets, and a smaller circle drawn inside of the circle could represent a subset.
Overlapping circles can illustrate intersection and union. Circles that illus-
trate the concepts of set theory are frequently used in elementary textbooks
and are called Venn diagrams.

1. Axiom of Extensionality: Two sets are identical if they contain the
same elements.

2. Axiom of Pairing: The set {x, y} exists.
3. Axiom of Power Sets: The power set of a set (the collection of all of its

subsets) exists. For example, the power set of {x, y} is {∅, {x}, {y}, {x, y}}
and it exists.

4. Axiom of the Null Set: The empty set ∅ exists.
5. Axiom of Union: The union of a set (the set containing the elements

of its members) exists. For example, the union of {{x, y}, {z}} is {x, y, z}
and it exists.

6. Axiom of Regularity: Roughly, no set can contain itself, nor can
there be membership “loops,” such as a set being an element of one of its
members.

7. Axiom of Infinity: An infinite set exists. An example of an infinite
set is the set of all integers.

8. Axiom of Separation: The set exists that is obtained by restricting x
with some property. For example, if the set of all integers exists, then the
set of all even integers exists.

9. Axiom of Replacement: The range of a function whose domain is
restricted to the elements of a set x, is also a set. For example, there is a
function from integers (the function’s domain) to their squares (its range).
If we restrict the domain to even integers, its range will become the set of
squares of even integers, so this axioms asserts that the set of squares of
even numbers exists. Technical note: In general, the “function” need not be
a set but can be a proper class.

10. Axiom of Choice: Let x be a set whose members are pairwise disjoint
(i.e, whose members contain no elements in common). Then there exists
another set containing one element from each member of x. For example, if
x is {{y, z}, {w, v}}, where y, z, w, and v are different sets, then a set such
as {z, w} exists (but the axiom doesn’t tell us which one). (Actually the
Axiom of Choice is redundant if the set x, as in this example, has a finite
number of elements.)

3.3. THE AXIOMS IN THE METAMATH LANGUAGE 63

The Axiom of Choice is usually considered an extension of ZF set theory
rather than a proper part of it. It is sometimes considered philosophically
controversial because it specifies the existence of a set without specifying
what the set is. ZF set theory that includes the Axiom of Choice is called
ZFC.

When expressed symbolically, the Axiom of Separation and the Axiom
of Replacement contain wff symbols and therefore each represent infinitely
many axioms, one for each possible wff. For this reason, they are often called
axiom schemes.

It turns out that the Axiom of the Null Set, the Axiom of Pairing, and the
Axiom of Separation can be derived from the other axioms and are therefore
unnecessary, although they tend to be included in standard texts for various
reasons (historical, philosophical, and possibly because some authors may
not know this). In the Metamath set theory database, these redundant
axioms are derived from the other ones.

3.3 The Axioms in the Metamath Language

The standard textbook axioms of predicate calculus are somewhat cumber-
some to implement on a computer because of the complex notions of “free
variable” and “proper substitution.” While it is possible to use the Meta-
math language to implement these concepts, we have chosen not to do so
in the set.mm set theory database. Instead, we have eliminated them by
carefully crafting the axioms so as to avoid them. This makes it easy for a
beginner to follow the steps in a proof without knowing any advanced con-
cepts other than the simple concept of replacing variables with expressions.
Here we list the axioms as they appear in set.mm so you can look them up
there easily. Incidentally, the show statement /tex command was used to
typeset them.

In order to develop the concepts of free variable and proper substitution
from the axioms described below, we use an additional Metamath statement
type called “disjoint variable restriction” that we have not encountered be-
fore. In the context of the axioms, the statement $d x y simply means that
x and y must be distinct, i.e. they may not be simultaneously substituted
with the same variable. The statement $d xϕ means variable x must not
occur in wff ϕ. For the precise definition of $d, see Section 4.2.4.

In our system, the axioms of predicate calculus have been divided into
what we call “pure predicate calculus,” which uses no = or ∈ symbols, and
“equality and substitution.” The former is weaker than traditional predicate
calculus because it does not have substitution (although it is a beautifully
simple and interesting system in itself), and the latter extends its power to
the full predicate calculus with equality.

You should also note that our system of predicate calculus is specifically
tailored for set theory; thus there are only two specific predicates = and ∈

64 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

and no functions or constants unlike more general systems.
Finally, I do not claim that these axioms are the most elegant possible.

They have more “metalogical” power than standard axioms (although they
are equivalent in a “logical” sense) and the ones I have chosen at least do
the job. Perhaps a logician who reads this would be interested in devising
a set of equivalent axioms that are shorter or more elegant in some sense.
(For example, there used to be an axiom ax-15 in our list that was later dis-
covered to be redundant in this version of the axiom system. The Comment
on p. 105 has a further remark on this axiom.)

A rigorous justification for this system can be found in [34].

3.3.1 Propositional Calculus

Axiom of Simplification.
ax-1 $a ` (ϕ→ (ψ→ϕ))

Axiom of Distribution.
ax-2 $a ` ((ϕ→ (ψ→χ))→ ((ϕ→ψ)→ (ϕ→χ)))

Axiom of Contraposition.
ax-3 $a ` ((¬ϕ→¬ψ)→ (ψ→ϕ))

Rule of Modus Ponens.
maj $e ` (ϕ→ψ)
min $e `ϕ
ax-mp $a `ψ

3.3.2 Pure Predicate Calculus

Axiom of Specialization.
ax-4 $a ` (∀xϕ→ϕ)

Axiom of Quantified Implication.
ax-5 $a ` (∀x (∀xϕ→ψ)→ (∀xϕ→∀xψ))

Axiom of Quantified Negation.
ax-6 $a ` (¬∀x¬∀xϕ→ϕ)

Axiom of Quantifier Commutation.
ax-7 $a ` (∀x∀ y ϕ→∀ y ∀xϕ)

Rule of Generalization.
ax-g.1 $e `ϕ
ax-gen $a `∀xϕ

3.3.3 Equality and Substitution

Axiom of Equality (1).
ax-8 $a ` (x= y→ (x= z→ y= z))

Axiom of Existence.
ax-9 $a ` (∀x (x= y→∀xϕ)→ϕ)

Axiom of Quantifier Substitution.

3.3. THE AXIOMS IN THE METAMATH LANGUAGE 65

ax-10 $a ` (∀x x= y→ (∀xϕ→∀ y ϕ))
Axiom of Variable Substitution.
ax-11 $a ` (¬∀x x= y→ (x= y→ (ϕ→∀x (x= y→ϕ))))

Axiom of Quantifier Introduction (1).
ax-12 $a ` (¬∀ z z=x→ (¬∀ z z= y→ (x= y→∀ z x= y)))

Axiom of Equality (2).
ax-13 $a ` (x= y→ (x∈ z→ y ∈ z))

Axiom of Equality (3).
ax-14 $a ` (x= y→ (z ∈x→ z ∈ y))

Axiom of Distinct Variables. (This axiom requires that two individual vari-
ables be distinct.)

$d x y
ax-16 $a ` (∀x x= y→ (ϕ→∀xϕ))

Axiom of Quantifier Introduction (2). (This axiom requires that the indi-
vidual variable not occur in the wff.)

$d x ϕ
ax-17 $a ` (ϕ→∀xϕ)

3.3.4 Set Theory

In order to make the axioms of set theory a little more compact, there are
several definitions from logic that we make use of implicitly, namely, “logical
and,” “logical equivalence,” and “there exists.”

(ϕ ∧ ψ) stands for ¬(ϕ→ ¬ψ)
(ϕ↔ ψ) stands for ((ϕ→ ψ) ∧ (ψ → ϕ))
∃xϕ stands for ¬∀x¬ϕ

In addition, the axioms of set theory require that all variables be dis-
tinct,4 thus we also assume:

$d x y z w

Axiom of Extensionality.
ax-ext $a ` (∀x (x∈ y↔x∈ z)→ y= z)

Axiom of Replacement.
ax-rep $a ` (∀w ∃ y ∀ z (∀ y ϕ→ z= y)→∃ y ∀ z (z ∈ y↔∃w (w∈x∧

∀ y ϕ)))
Axiom of Union.
ax-un $a `∃x∀ y (∃x (y ∈x∧x∈ z)→ y ∈x)

Axiom of Power Sets.

4Set theory axioms can be devised so that no variables are required to be distinct,
provided we replace ax-16 with an axiom stating that “at least two things exist,” thus
making ax-17 the only other axiom requiring the $d statement. These axioms are uncon-
ventional and are not presented here, but they can be found on the http://metamath.org

web site. See also the Comment on p. 105.

http://metamath.org

66 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

ax-pow $a `∃x∀ y (∀x (x∈ y→x∈ z)→ y ∈x)
Axiom of Regularity.
ax-reg $a ` (∃x x∈ y→∃x (x∈ y ∧∀ z (z ∈x→¬ z ∈ y)))

Axiom of Infinity.
ax-inf $a `∃x (y ∈x∧∀ y (y ∈x→∃ z (y ∈ z ∧ z ∈x)))

Axiom of Choice.
ax-ac $a `∃x∀ y ∀ z ((y ∈ z ∧ z ∈w)→∃w ∀ y (∃w ((y ∈ z ∧ z ∈w)∧ (

y ∈w∧w∈x))↔ y=w))

3.3.5 That’s It

There you have it, the axioms for (essentially) all of mathematics! Wonder
at them and stare at them in awe. Put a copy in your wallet, and you will
carry in your pocket the encoding for all theorems ever proved and that ever
will be proved, from the most mundane to the most profound.

3.4 A Hierarchy of Definitions

The axioms in the previous section in principle embody everything that can
be done within standard mathematics. However, it is impractical to accom-
plish very much by using them directly, for even simple concepts (from a
human perspective) can involve extremely long, incomprehensible formulas.
Mathematics is made practical by introducing definitions. Definitions usu-
ally introduce new symbols, or at least new relationships among existing
symbols, to abbreviate more complex formulas. An important requirement
for a definition is that there exist a straightforward (algorithmic) method
for eliminating the abbreviation by expanding it into the more primitive
symbol string that it represents. Some important definitions included in the
file set.mm are listed in this section for reference, and also to give you a feel
for why something like ω (the set of natural numbers 0, 1, 2,. . .) becomes
very complicated when completely expanded into primitive symbols.

What is the motivation for definitions, aside from allowing complicated
expressions to be expressed more simply? In the case of ω, one goal is
to provide a basis for the theory of natural numbers. Before set theory
was invented, a set of axioms for arithmetic, called Peano’s postulates, was
devised and shown to have the properties one expects for natural numbers.
Now anyone can postulate a set of axioms, but if the axioms are inconsistent
contradictions can be derived from them. Once a contradiction is derived,
anything can be trivially proved, including all the facts of arithmetic and
their negations. To ensure that an axiom system is at least as reliable as
the axioms for set theory, we can define sets and operations on those sets
that satisfy the new axioms. In the set.mm Metamath database, we prove
that the elements of ω satisfy Peano’s postulates, and it’s a long and hard
journey to get there directly from the axioms of set theory. But the result is

3.4. A HIERARCHY OF DEFINITIONS 67

confidence in the foundations of arithmetic. And there is another advantage:
we now have all the tools of set theory at our disposal for manipulating
objects that obey the axioms for arithmetic.

What are the criteria we use for definitions? First, and of utmost impor-
tance, the definition should not be creative, that is it should not allow an
expression that previously qualified as a wff but was not provable, to become
provable. Second, the definition should be eliminable, that is there should
exist an algorithmic method for proving any expression using the definition
into a logically equivalent expression that previously qualified as a wff.

In almost all cases below, definitions connect two expressions with either
↔ or =. Eliminating5 such a definition is a simple matter of substituting the
expression on the left-hand side (definiendum or thing being defined) with
the equivalent, more primitive expression on the right-hand side (definiens
or definition).

Often a definition has variables on the right-hand side which do not ap-
pear on the left-hand side; these are called dummy variables. In this case,
any allowable substitution (such as a new, distinct variable) can be used
when the definition is eliminated. Dummy variables may be used only if
they are effectively bound, meaning that the definition will remain logically
equivalent upon any substitution of a dummy variable with any other quali-
fying expression, i.e. any symbol string (such as another variable) that meets
the restrictions on the dummy variable imposed by $d and $f statements.
For example, we could define a constant ⊥ (inverted tee, meaning logical
“false”) as (ϕ ∧ ¬ϕ), i.e. “phi and not phi.” Here ϕ is effectively bound
because the definition remains logically equivalent when we replace ϕ with
any other wff. (We do not define ⊥ in set.mm.)

There are two cases where eliminating definitions is a little more complex.
These cases are the definitions df-bi and df-cleq. The first stretches the
concept of a definition a little, as in effect it “defines a definition;” however,
it meets our requirements for a definition in that it is eliminable and does
not strengthen the language. Theorem bii shows the substitution needed
to eliminate the ↔ symbol.

Definition df-cleq extends the usage of the equality symbol to include
“classes” in set theory. The reason it is potentially problematic is that it can
lead to statements which do not follow from logic alone but presuppose the
Axiom of Extensionality, so we include this axiom as a hypothesis for the
definition. We could have made df-cleq directly eliminable by introducing
a new equality symbol, but have chosen not to do so in keeping with standard
textbook practice. Definitions such as df-cleq that extend the meaning of
existing symbols must be introduced carefully so that they do not lead to
contradictions. Definition df-clel also extends the meaning of an existing

5Here we mean the elimination that a human might do in his or her head. To eliminate
them as part of a Metamath proof we would invoke one of a number of theorems that deal
with transitivity of equivalence or equality; there are many such examples in the proofs
in set.mm.

68 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

symbol (∈); while it doesn’t strengthen the language like df-cleq, this is
not obvious and it must also be subject to the same scrutiny.

Exercise: Study how the wff x ∈ ω, meaning “x is a natural number,”
could be expanded in terms of primitive symbols, starting with the defini-
tions df-clel on p. 71 and df-om on p. 74 and working your way back.
Don’t bother to work out the details; just make sure that you understand
how you could do it in principle. The answer is shown in the footnote on
p. 57. If you actually do work it out, you won’t get exactly the same answer
because we used a few simplifications such as discarding occurrences of ¬¬
(double negation).

In the definitions below, we have placed the ascii Metamath source
below each of the formulas to help you to become familiar with the notation
in the database. For simplicity, the necessary $f and $d statements are
not shown. If you are in doubt, use the show statement command in the
Metamath program to see the full statement.

To understand the motivation for these definitions, you should consult
the references indicated: Takeuti and Zaring [59], Quine [48], Bell and Ma-
chover [5], and Enderton [16]. Our list of definitions is provided more for
reference than as a learning aid. However, by looking at a few of them you
can gain a feel for how the hierarchy is built up. The definitions are a rep-
resentative sample of the 130 or so in set.mm, but they are complete with
respect to the theorem examples we will present in Section 3.6. Also, some
are slightly different from, but logically equivalent to, the ones in set.mm

(some of which have been revised over time to shorten them, for example).

3.4.1 Definitions for Propositional Calculus

The symbols ϕ, ψ, and χ represent wffs.
Our first definition introduces the biconditional connective6 (also called

logical equivalence). Unlike most traditional developments, we have chosen
not to have a separate symbol such as “Df.” to mean “is defined as.” Instead,
we will use the biconditional connective for this purpose, as it lets us use
logic to manipulate definitions directly. Here we state the properties of
the biconditional connective with a carefully crafted $a statement, which
effectively uses the biconditional connective to define itself. The ↔ symbol
can be eliminated from a formula using theorem bii, which is derived later.

Define the biconditional connective.

df-bi $a `¬ (((ϕ↔ψ)→¬ ((ϕ→ψ)→¬ (ψ→ϕ)))→¬ (¬ ((ϕ→
ψ)→¬ (ψ→ϕ))→ (ϕ↔ψ)))

6The term “connective” is informally used to mean a symbol that is placed between two
variables or adjacent to a variable, whereas a mathematical “constant” usually indicates
a symbol such as the number 0 that may replace a variable or metavariable. From
Metamath’s point of view, there is no distinction between a connective and a constant;
both are constants in the Metamath language.

3.4. A HIERARCHY OF DEFINITIONS 69

df-bi $a |- -. (((ph <-> ps) -> -. ((ph -> ps) ->

-. (ps -> ph))) -> -. (-. ((ph -> ps) -> -. (

ps -> ph)) -> (ph <-> ps))) $.

This theorem relates the biconditional connective to primitive connectives
and can be used to eliminate the ↔ symbol from any wff.

bii $p ` ((ϕ↔ψ)↔¬ ((ϕ→ψ)→¬ (ψ→ϕ)))
bii $p |- ((ph <-> ps) <-> -. ((ph -> ps) -> -. (ps

-> ph))) $= ... $.

Define disjunction (or).

df-or $a ` ((ϕ∨ψ)↔ (¬ϕ→ψ))
df-or $a |- ((ph \/ ps) <-> (-. ph -> ps)) $.

Define conjunction (and).

df-an $a ` ((ϕ∧ψ)↔¬ (ϕ→¬ψ))
df-an $a |- ((ph /\ ps) <-> -. (ph -> -. ps)) $.

Define disjunction (or) of 3 wffs.

df-3or $a ` ((ϕ∨ψ ∨χ)↔ ((ϕ∨ψ)∨χ))
df-3or $a |- ((ph \/ ps \/ ch) <-> ((ph \/ ps) \/ ch

)) $.

Define conjunction (and) of 3 wffs.

df-3an $a ` ((ϕ∧ψ ∧χ)↔ ((ϕ∧ψ)∧χ))
df-3an $a |- ((ph /\ ps /\ ch) <-> ((ph /\ ps) /\ ch

)) $.

3.4.2 Definitions for Predicate Calculus

The symbols x, y, and z represent individual variables of predicate calcu-
lus. In this section, they are not necessarily distinct unless it is explicitly
mentioned.

Define existential quantification.

df-ex $a ` (∃xϕ↔¬∀x¬ϕ)
df-ex $a |- (E. x ph <-> -. A. x -. ph) $.

Define proper substitution. Note that this definition is valid even when x
and y are the same variable. The first conjunct is a “trick” used to achieve
this property, making the definition look somewhat peculiar at first. For our
notation, we use [y/x]ϕ to mean “the wff that results when y is properly
substituted with x in the wff ϕ.” The notation is different from the notation
ϕ(x|y) that is sometimes used, because the latter notation is ambiguous for
us: for example, we don’t know whether ¬ϕ(x|y) is to be interpreted as

70 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

¬(ϕx|y) or (¬ϕx|y).7 Other texts often use ϕ(y) to indicate our [y/x]ϕ, but
this notation is even more ambiguous since there is no explicit indication of
what is being substituted.

df-sb $a ` ([y / x]ϕ↔ ((x= y→ϕ)∧∃x (x= y ∧ϕ)))
df-sb $a |- ([y / x] ph <-> ((x = y -> ph) /\ E. x (

x = y /\ ph))) $.

Define existential uniqueness (“there exists exactly one”). Note that y is a
variable distinct from x and not occurring in ϕ.

df-eu $a ` (∃ !xϕ↔∃ y ∀x (ϕ↔x= y))
df-eu $a |- (E! x ph <-> E. y A. x (ph <-> x = y)) $.

3.4.3 Definitions for Set Theory

The symbols x, y, z, and w represent individual variables of predicate cal-
culus, which in set theory are understood to be sets. To make set theory
more practical, we introduce the notion of a “class.” A class is either a set
variable (such as x) or an expression of the form {x|ϕ} (called an “abstrac-
tion class”). Note that sets (i.e. individual variables) always exist (this is
a theorem of logic, namely ∃y y = x for any set x), whereas classes may
or may not exist (i.e. ∃y y = A may or may not be true). If a class does
not exist it is called a “proper class.” Definitions df-clab, df-cleq, and
df-clel can be used to convert an expression containing classes into one
containing only set variables and wff metavariables.

The symbols A, B, C, D, F , G, and R are metavariables that range over
classes. A class metavariable A may be eliminated from a wff by replacing
it with {x|ϕ} where neither x nor ϕ occur in the wff.

In this section, individual variables are always assumed to be distinct
from each other unless otherwise indicated. In addition, dummy variables
on the right-hand side of a definition do not occur in the class and wff
metavariables in the definition.

The definitions we present here are a partial but self-contained collection
selected from several hundred that appear in the current set.mm database.
They are adequate for a basic development of elementary set theory.

Define the abstraction class. x and y need not be distinct. Definition 2.1 of
Quine, p. 16. This definition may seem puzzling since it is shorter than the

7Because of the way we initially defined wffs, this is the case with any postfix connec-
tive (one occurring after the symbols being connected) or infix connective (one occurring
between the symbols being connected). Metamath does not have a built-in notion of
operator binding strength that could eliminate the ambiguity. The initial parenthesis
effectively provides a prefix connective to eliminate ambiguity. Some conventions, such
as Polish notation used in the 1930’s and 1940’s by Polish logicians, use only prefix con-
nectives and thus allow the total elimination of parentheses, at the expense of readability.
In Metamath we could actually redefine all notation to be Polish if we wanted to without
having to change any proofs!

3.4. A HIERARCHY OF DEFINITIONS 71

expression being defined and does not buy us anything in terms of brevity.
The reason we introduce this definition is because it fits in neatly with the
extension of the ∈ connective provided by df-clel.

df-clab $a ` (x∈{ y |ϕ }↔ [x / y]ϕ)
df-clab $a |- (x e. { y | ph } <-> [x / y] ph) $.

Define the equality connective between classes. See Quine or Chapter 4 of
Takeuti and Zaring for its justification and methods for eliminating it. This
is an example of a somewhat “dangerous” definition, because it extends the
use of the existing equality symbol rather than introducing a new symbol,
allowing us to make statements in the original language that may not be
true. For example, it permits us to deduce y = z ↔ ∀x(x ∈ y ↔ x ∈ z)
which is not a theorem of logic but rather presupposes the Axiom of Exten-
sionality, which we include as a hypothesis so that we can know when this
axiom is assumed in a proof (with the show trace_back command). We
could avoid the danger by introducing another symbol, say P, in place of
=; this would also have the advantage of making elimination of the defini-
tion straightforward and would eliminate the need for Extensionality as a
hypothesis. We would then also have the advantage of being able to identify
exactly where Extensionality truly comes into play. One of our theorems
would be x P y ↔ x = y by invoking Extensionality. However in keeping
with standard practice we retain the “dangerous” definition.

df-cleq.1 $e ` (∀x (x∈ y↔x∈ z)→ y= z)
df-cleq $a ` (A=B↔∀x (x∈A↔x∈B))

df-cleq.1 $e |- (A. x (x e. y <-> x e. z) -> y = z) $.

df-cleq $a |- (A = B <-> A. x (x e. A <-> x e. B)) $.

Define the membership connective between classes. Theorem 6.3 of Quine,
p. 41, which we adopt as a definition. Note that it extends the use of the
existing membership symbol, but unlike df-cleq it does not extend the
set of valid wffs of logic when the class metavariables are replaced with set
variables.

df-clel $a ` (A∈B↔∃x (x=A∧x∈B))
df-clel $a |- (A e. B <-> E. x (x = A /\ x e. B)) $.

Define inequality.

df-ne $a ` (A 6=B↔¬A=B)
df-ne $a |- (A =/= B <-> -. A = B) $.

Define restricted universal quantification. Enderton, p. 22.

df-ral $a ` (∀x∈Aϕ↔∀x (x∈A→ϕ))
df-ral $a |- (A. x e. A ph <-> A. x (x e. A -> ph)) $.

Define restricted existential quantification. Enderton, p. 22.

df-rex $a ` (∃x∈Aϕ↔∃x (x∈A∧ϕ))
df-rex $a |- (E. x e. A ph <-> E. x (x e. A /\ ph)) $.

72 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

Define the universal class. Definition 5.20, p. 21, of Takeuti and Zaring.

df-v $a `V = {x |x=x }
df-v $a |- V = { x | x = x } $.

Define the subclass relationship between two classes (called the subset rela-
tion if the classes are sets i.e. are not proper). Definition 5.9 of Takeuti and
Zaring, p. 17.

df-ss $a ` (A⊆B↔∀x (x∈A→x∈B))
df-ss $a |- (A (_ B <-> A. x (x e. A -> x e. B)) $.

Define the union of two classes. Definition 5.6 of Takeuti and Zaring, p. 16.

df-un $a ` (A∪B) = {x | (x∈A∨x∈B) }
df-un $a |- (A u. B) = { x | (x e. A \/ x e. B) } $.

Define the intersection of two classes. Definition 5.6 of Takeuti and Zaring,
p. 16.

df-in $a ` (A∩B) = {x | (x∈A∧x∈B) }
df-in $a |- (A i^i B) = { x | (x e. A /\ x e. B) } $.

Define class difference. Definition 5.12 of Takeuti and Zaring, p. 20. Several
notations are used in the literature; we chose the \ convention instead of a
minus sign to reserve the latter for later use in, e.g., arithmetic.

df-dif $a ` (A \B) = {x | (x∈A∧¬x∈B) }
df-dif $a |- (A \ B) = { x | (x e. A /\ -. x e. B) } $.

Define the empty or null set. Compare Definition 5.14 of Takeuti and Zaring,
p. 20.

df-nul $a `∅= (V \V)
df-nul $a |- (/) = (V \ V) $.

Define power class. Definition 5.10 of Takeuti and Zaring, p. 17, but we also
let it apply to proper classes. (Note that P~ is the symbol for calligraphic
P, the tilde suggesting “curly;” see Appendix A.)

df-pw $a `P A= {x |x⊆A }
df-pw $a |- P~ A = { x | x (_ A } $.

Define the singleton of a class. Definition 7.1 of Quine, p. 48. It is well-
defined for proper classes, although it is not very meaningful in this case,
where it evaluates to the empty set.

df-sn $a ` {A }= {x |x=A }
df-sn $a |- { A } = { x | x = A } $.

Define an unordered pair of classes. Definition 7.1 of Quine, p. 48.

df-pr $a ` {A ,B }= ({A }∪ {B })
df-pr $a |- { A , B } = ({ A } u. { B }) $.

Define an unordered triple of classes. Definition of Enderton, p. 19.

df-tp $a ` {A ,B ,C }= ({A ,B }∪ {C })

3.4. A HIERARCHY OF DEFINITIONS 73

df-tp $a |- { A , B , C } = ({ A , B } u. { C }) $.

Kuratowski’s ordered pair definition. Definition 9.1 of Quine, p. 58. For
proper classes it is not meaningful but is well-defined for convenience. (Note
that <. stands for 〈 whereas < stands for <, and similarly for >. .)

df-op $a ` 〈A ,B 〉= { {A } , {A ,B } }
df-op $a |- <. A , B >. = { { A } , { A , B } } $.

Define the union of a class. Definition 5.5, p. 16, of Takeuti and Zaring.

df-uni $a `
⋃
A= {x | ∃ y (x∈ y ∧ y ∈A) }

df-uni $a |- U. A = { x | E. y (x e. y /\ y e. A) } $.

Define the intersection of a class. Definition 7.35, p. 44, of Takeuti and
Zaring.

df-int $a `
⋂
A= {x | ∀ y (y ∈A→x∈ y) }

df-int $a |- |^| A = { x | A. y (y e. A -> x e. y) } $.

Define a transitive class. This should not be confused with a transitive
relation, which is a different concept. Definition from p. 71 of Enderton,
extended to classes.

df-tr $a ` (TrA↔
⋃
A⊆A)

df-tr $a |- (Tr A <-> U. A (_ A) $.

Define a notation for a general binary relation. Definition 6.18, p. 29, of
Takeuti and Zaring, generalized to arbitrary classes. This definition is well-
defined, although not very meaningful, when classes A and/or B are proper.
The lack of parentheses (or any other connective) is not ambiguous since we
are defining an atomic wff.

df-br $a ` (A R B↔〈A ,B 〉 ∈R)
df-br $a |- (A R B <-> <. A , B >. e. R) $.

Define an abstraction class of ordered pairs. A special case of Definition
4.16, p. 14, of Takeuti and Zaring. Note that x, y, and z must be distinct
but that x and y may occur in ϕ.

df-opab $a ` { 〈x , y 〉 |ϕ }= { z | ∃x ∃ y (z= 〈x , y 〉 ∧ϕ) }
df-opab $a |- { <. x , y >. | ph } = { z | E. x E. y (z =

<. x , y >. /\ ph) } $.

Define the epsilon relation. Similar to Definition 6.22, p. 30, of Takeuti and
Zaring.

df-eprel $a `E= { 〈x , y 〉 |x∈ y }
df-eprel $a |- E = { <. x , y >. | x e. y } $.

Define a founded relation. R is a founded relation on A iff (if and only
if) each nonempty subset of A has an “R-minimal element.” Similar to
Definition 6.21, p. 30, of Takeuti and Zaring.

df-fr $a ` (R Fr A↔∀x ((x⊆A∧¬x=∅)→∃ y (y ∈x∧ (x∩{ z | z
R y }) =∅)))

74 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

df-fr $a |- (R Fr A <-> A. x ((x (_ A /\ -. x = (/)) ->

E. y (y e. x /\ (x i^i { z | z R y }) = (/)))) $.

Define a well-ordering. R is a well-ordering of A iff it is founded on A and
the elements of A are pairwise R-comparable. Similar to Definition 6.24(2),
p. 30, of Takeuti and Zaring.

df-we $a ` (R We A↔ (R Fr A∧∀x∀ y ((x∈A∧ y ∈A)→ (x R y ∨
x= y ∨ y R x))))

df-we $a |- (R We A <-> (R Fr A /\ A. x A. y ((x e.

A /\ y e. A) -> (x R y \/ x = y \/ y R x)))) $.

Define the ordinal predicate, which is true for a class that is transitive and
is well-ordered by the epsilon relation. Similar to definition on p. 468, Bell
and Machover.

df-ord $a ` (Ord A↔ (Tr A∧E We A))
df-ord $a |- (Ord A <-> (Tr A /\ E We A)) $.

Define class of all ordinal numbers. An ordinal number is a set that satisfies
the ordinal predicate. Definition 7.11 of Takeuti and Zaring, p. 38.

df-on $a ` On = {x |Ord x }
df-on $a |- On = { x | Ord x } $.

Define the limit ordinal predicate, which is true for a non-empty ordinal
that is not a successor (i.e. that is the union of itself). Compare Bell and
Machover, p. 471 and Exercise (1), p. 42 of Takeuti and Zaring.

df-lim $a ` (Lim A↔ (Ord A∧¬A=∅∧A=
⋃
A))

df-lim $a |- (Lim A <-> (Ord A /\ -. A = (/) /\ A = U.

A)) $.

Define the successor of a class. Definition 7.22 of Takeuti and Zaring, p. 41.
Our definition is a generalization to classes, although it is meaningless when
classes are proper.

df-suc $a ` suc A= (A∪{A })
df-suc $a |- suc A = (A u. { A }) $.

Define the class of natural numbers. Compare Bell and Machover, p. 471.

df-om $a `ω= {x | (Ord x∧∀ y (Lim y→x∈ y)) }
df-om $a |- om = { x | (Ord x /\ A. y (Lim y -> x e. y)

) } $.

Define the cross product of two classes. Definition 9.11 of Quine, p. 64.

df-xp $a ` (A×B) = { 〈x , y 〉 | (x∈A∧ y ∈B) }
df-xp $a |- (A X. B) = { <. x , y >. | (x e. A /\ y e. B

) } $.

Define the domain of a class. Definition 6.5(1) of Takeuti and Zaring, p. 24.

df-dm $a ` domA= {x | ∃ y 〈x , y 〉 ∈A }
df-dm $a |- dom A = { x | E. y <. x , y >. e. A } $.

3.4. A HIERARCHY OF DEFINITIONS 75

Define the range of a class. Definition 6.5(2) of Takeuti and Zaring, p. 24.

df-rn $a ` ranA= { y | ∃x 〈x , y 〉 ∈A }
df-rn $a |- ran A = { y | E. x <. x , y >. e. A } $.

Define the restriction of a class. Definition 6.6(1) of Takeuti and Zaring,
p. 24.

df-res $a ` (A �B) = (A∩ (B×V))
df-res $a |- (A |‘ B) = (A i^i (B X. V)) $.

Define the image of a class. Definition 6.6(2) of Takeuti and Zaring, p. 24.

df-ima $a ` (A “B) = ran (A �B)
df-ima $a |- (A " B) = ran (A |‘ B) $.

Define the composition of two classes. Definition 6.6(3) of Takeuti and
Zaring, p. 24.

df-co $a ` (A ◦B) = { 〈x , y 〉 | ∃ z (〈x , z 〉 ∈B ∧ 〈 z , y 〉 ∈A) }
df-co $a |- (A o. B) = { <. x , y >. | E. z (<. x , z

>. e. B /\ <. z , y >. e. A) } $.

Define a relation. Definition 6.4(1) of Takeuti and Zaring, p. 23.

df-rel $a ` (Rel A↔A⊆ (V ×V))
df-rel $a |- (Rel A <-> A (_ (V X. V)) $.

Define a function. Definition 6.4(4) of Takeuti and Zaring, p. 24.

df-fun $a ` (Fun A↔ (Rel A∧∀x ∃ z ∀ y (〈x , y 〉 ∈A→ y= z)))
df-fun $a |- (Fun A <-> (Rel A /\ A. x E. z A. y (<. x

, y >. e. A -> y = z))) $.

Define a function with domain. Definition 6.15(1) of Takeuti and Zaring,
p. 27.

df-fn $a ` (A Fn B↔ (Fun A∧dom A=B))
df-fn $a |- (A Fn B <-> (Fun A /\ dom A = B)) $.

Define a function with domain and co-domain. Definition 6.15(3) of Takeuti
and Zaring, p. 27.

df-f $a ` (F :A−→B↔ (F Fn A∧ ran F ⊆B))
df-f $a |- (F : A --> B <-> (F Fn A /\ ran F (_ B)) $.

Define a one-to-one function. Compare Definition 6.15(5) of Takeuti and
Zaring, p. 27.

df-f1 $a ` (F :A
1-1−→ B↔ (F :A−→B ∧∀ y ∃ z ∀x (〈x , y 〉 ∈F →x=

z)))
df-f1 $a |- (F : A -1-1-> B <-> (F : A --> B /\

A. y E. z A. x (<. x , y >. e. F -> x = z))) $.

Define an onto function. Definition 6.15(4) of Takeuti and Zaring, p. 27.

df-fo $a ` (F :A −→onto B↔ (F Fn A∧ ran F =B))

df-fo $a |- (F : A -onto-> B <-> (F Fn A /\ ran F

76 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

= B)) $.

Define a one-to-one, onto function. Compare Definition 6.15(6) of Takeuti
and Zaring, p. 27.

df-f1o $a ` (F :A
1-1−→

onto B↔ (F :A
1-1−→ B ∧F :A −→onto B))

df-f1o $a |- (F : A -1-1-onto-> B <-> (F : A -1-1-> B

/\ F : A -onto-> B)) $.

Define the value of a function. This definition applies to any class and
evaluates to the empty set when it is not meaningful. Note that F ‘A means
the same thing as the more familiar F (A) notation for a function’s value at
A. The F ‘A notation is common in formal set theory.

df-fv $a ` (F ‘A) =
⋃
{x | (F “ {A }) = {x } }

df-fv $a |- (F ‘ A) = U. { x | (F " { A }) = { x } } $.

Define the result of an operation. Here, F is an operation on two values
(such as + for real numbers). This is defined for proper classes A and B
even though not meaningful in that case. However, the definition can be
meaningful when F is a proper class.

df-opr $a ` (A F B) = (F ‘ 〈A ,B 〉)
df-opr $a |- (A F B) = (F ‘ <. A , B >.) $.

3.5 Tricks of the Trade

In the set.mm database our goal was usually to conform to modern notation.
However in some cases the relationship to standard textbook language may
be obscured by several unconventional devices we used to simplify the de-
velopment and to take advantage of the Metamath language. In this section
we will describe some common conventions used in set.mm.

• The turnstile symbol, `, meaning “it is provable that,” is the first token
of all assertions and hypotheses that aren’t syntax constructions. This
is a standard convention in logic. (We mentioned this earlier, but this
symbol is bothersome to some people without a logic background. It
has no deeper meaning but just provides us with a way to distinguish
syntax constructions from ordinary mathematical statements.)

• A hypothesis of the form

$e ` (ϕ→∀xϕ)

should be read “assume variable x is (effectively) not free in wff ϕ.”
Literally, this says “assume it is provable that ϕ→ ∀xϕ.” This device
lets us avoid the complexities associated with the standard treatment
of free and bound variables. The footnote on p. 170 discusses this
further.

3.5. TRICKS OF THE TRADE 77

• A statement of one of the forms

$a ` (¬∀x x= y→ . . .)
$p ` (¬∀x x= y→ . . .)

should be read “if x and y are distinct variables, then...” This an-
tecedent provides us with a technical device to avoid the need for the
$d statement early in our development of predicate calculus, permit-
ting symbol manipulations to be as conceptually simple as those in
propositional calculus. However, the $d statement eventually becomes
a requirement, and after that this device is rarely used.

• The statement

$d x y

should be read “assume x and y are distinct variables.”

• The statement

$d x ϕ

should be read “assume x does not occur in ϕ.”

• The statement

$d x A

should be read “assume variable x does not occur in class A.”

• The restriction and hypothesis group

$d x A
$d x ψ
$e ` (x=A→ (ϕ↔ψ))

is frequently used in place of explicit substitution, meaning “assume ψ
results from the proper substitution of A for x in ϕ.” Sometimes “$e
` (ψ → ∀xψ)” is used instead of “$d xψ,” which requires only that x
be effectively not free in ϕ but not necessarily absent from it. The use
of implicit substitution is partly a matter of personal style, although
it may make proofs somewhat shorter than would be the case with
explicit substitution.

• The hypothesis

$e `A∈V

should be read “assume class A is a set (i.e. exists).” This is a conve-
nient convention used by Quine.

• The restriction and hypothesis

78 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

$d x y
$e ` (y ∈A→∀x y ∈A)

should be read “assume variable x is (effectively) not free in class A.”

3.6 A Theorem Sampler

In this section we list some of the more important theorems that are proved
in the set.mm database, and they illustrate the kinds of things that can be
done with Metamath. While all of these facts are well-known results in set
theory, Metamath offers the advantage of easily allowing you to trace their
derivation back to axioms. Our intent here is not to try to explain the details
or motivation; for this we refer you to the textbooks that are mentioned in
the descriptions. (The set.mm file has bibliographic references for the text
references.) Their proofs often embody important concepts you may wish to
explore with the Metamath program (see Section 3.8). All the symbols that
are used here are defined in Section 3.4. For brevity we haven’t included the
$d restrictions or $f hypotheses for these theorems; when you are uncertain
consult the set.mm database.

Our first theorem is not very deep but provides us with a notational
device that is frequently used. It allows us to use the expression “A ∈ V ”
as a compact way of saying that class A exists, i.e. is a set.

Two ways to say “A is a set”: A is a member of the universe V if and only
if A exists (i.e. there exists a set equal to A). Theorem 6.9 of Quine, p. 43.

isset $p ` (A∈V ↔∃x x=A)

Next we prove the axioms of standard ZF set theory that were missing
from our axiom system. From our point of view they are theorems since
they can be derived from the other axioms.

Axiom of Separation (Aussonderung) proved from the other axioms of ZF
set theory. Compare Exercise 4 of Takeuti and Zaring, p. 22.

inex1.1 $e `A∈V
inex $p ` (A∩B)∈V

Axiom of the Null Set proved from the other axioms of ZF set theory. Corol-
lary 5.16 of Takeuti and Zaring, p. 20.

0ex $p `∅∈V
The Axiom of Pairing proved from the other axioms of ZF set theory. The-
orem 7.13 of Quine, p. 51.

prex $p ` {A ,B }∈V

Next we will list some famous or important theorems that are proved
in the set.mm database. None of them except omex require the Axiom of

3.6. A THEOREM SAMPLER 79

Infinity, as you can verify with the show trace_back Metamath command.

The resolution of Russell’s paradox. There exists no set containing the set
of all sets which are not members of themselves. Proposition 4.14 of Takeuti
and Zaring, p. 14.

ru $p `¬∃x x= { y | ¬ y ∈ y }
Cantor’s theorem. No set can be mapped onto its power set. Compare
Theorem 6B(b) of Enderton, p. 132.

canth.1 $e `A∈V
canth $p `¬F :A −→onto P A

The Burali-Forti paradox. No set contains all ordinal numbers. Enderton,
p. 194. (Burali-Forti was one person, not two.)

onprc $p `¬On∈V
Peano’s postulates for arithmetic. Proposition 7.30 of Takeuti and Zaring,
pp. 42–43. The objects being described are the members of ω i.e. the natural
numbers 0, 1, 2,. . . . The successor operation suc means “plus one.” peano1

says that 0 (which is defined as the empty set) is a natural number. peano2
says that if A is a natural number, so is A + 1. peano3 says that 0 is not
the successor of any natural number. peano4 says that two natural numbers
are equal if and only if their successors are equal. peano5 is essentially the
same as mathematical induction.

peano1 $p `∅∈ω

peano2 $p ` (A∈ω→ sucA∈ω)

peano3 $p ` (A∈ω→¬ sucA=∅)

peano4 $p ` ((A∈ω ∧B ∈ω)→ (sucA= sucB↔A=B))

peano5 $p ` ((∅∈A∧∀x∈ω (x∈A→ sucx∈A))→ω⊆A)

Finite Induction (mathematical induction). The first hypothesis is the basis
and the second is the induction hypothesis. Theorem Schema 22 of Suppes,
p. 136.

findes.1 $e ` [∅ / x]ϕ
findes.2 $e ` (x∈ω→ (ϕ→ [sucx /x]ϕ))
findes $p ` (x∈ω→ϕ)

Transfinite Induction with explicit substitution. The first hypothesis is the
basis, the second is the induction hypothesis for successors, and the third is
the induction hypothesis for limit ordinals. Theorem Schema 4 of Suppes,
p. 197.

tfindes.1 $e ` [∅ / x]ϕ
tfindes.2 $e ` (x∈On→ (ϕ→ [sucx /x]ϕ))
tfindes.3 $e ` (Lim y→ (∀x∈ y ϕ→ [y / x]ϕ))

80 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

tfindes $p ` (x∈On→ϕ)

Principle of Transfinite Recursion. Theorem 7.41 of Takeuti and Zaring,
p. 47. Transfinite recursion is the key theorem that allows arithmetic of
ordinals to be rigorously defined, and has many other important uses as
well. Hypotheses tfr.1 and tfr.2 specify a certain (proper) class F . The
complicated definition of F is not important in itself; what is important is
that there be such an F with the required properties, and we show this by
displaying F explicitly. tfr1 states that F is a function whose domain is
the set of ordinal numbers. tfr2 states that any value of F is completely
determined by its previous values and the values of an auxiliary function,
G. tfr3 states that F is unique, i.e. it is the only function that satisfies
tfr1 and tfr2. Note that f is an individual variable like x and y; it is just
a mnemonic to remind us that A is a collection of functions.

tfr.1 $e `A= { f | ∃x∈On (f Fnx∧∀ y ∈x (f ‘ y) = (G ‘ (f � y))) }
tfr.2 $e `F =

⋃
A

tfr1 $p `F Fn On
tfr2 $p ` (z ∈On→ (F ‘ z) = (G ‘ (F � z)))
tfr3 $p ` ((B Fn On∧∀x∈On (B ‘x) = (G ‘ (B �x)))→B=F)

The existence of omega (the class of natural numbers). Axiom 7 of Takeuti
and Zaring, p. 43. (This is the only theorem in this section requiring the
Axiom of Infinity.)

omex $p `ω ∈V

3.7 Axioms for Real and Complex Numbers

This section presents the axioms for real and complex numbers. Analysis
textbooks implicitly or explicity use these axioms or their equivalents are
used as their starting point. In the database set.mm, we define real and
complex numbers as (rather complicated) specific sets and derive these ax-
ioms as theorems from the axioms of ZF set theory, using a method called
Dedekind cuts. We omit the details of this construction, which you can fol-
low if you wish using the set.mm database in conjunction with the textbooks
referenced therein. The construction is actually unimportant other than to
show that sets exist that satisfy the axioms, and thus that the axioms are
consistent if ZF set theory is consistent. When working with real numbers
you can think of them as being the actual sets resulting from the construc-
tion (for definiteness), or you can think of them as otherwise unspecified
sets that happen to satisfy the axioms.

For the axioms we are given (or postulate) 8 classes: C (the set of complex
numbers), R (the set of real numbers, a subset of C), 0 (zero), 1 (one), i
(square root of −1), + (plus), · (times), and < (less than). Subtraction
and division are defined terms and are not part of the axioms; for their
definitions see set.mm.

3.7. AXIOMS FOR REAL AND COMPLEX NUMBERS 81

Note that the notation (A + B) (and similarly (A · B)) specifies a class
called an operation, and is the function value of the class + at ordered pair
〈A,B〉. An operation is defined by statement df-opr on p. 76. The notation
A < B specifies a wff called a binary relation and means 〈A,B〉 ∈<, as
defined by statement df-br on p. 73.

Our set of 8 given classes is assumed to satisfy the following 28 axioms.

1. The class of complex numbers is a set.
axcnex $p `C∈V

2. The real numbers are a subset of the complex numbers.
axresscn $p `R⊆C

3. Zero is a real number.
ax0re $p ` 0∈R

4. One is a real number.
ax1re $p ` 1∈R

5. The imaginary number i is a complex number.
axicn $p ` i∈C

6. Complex numbers are closed under addition.
axaddcl $p ` ((A∈C∧B ∈C)→ (A+B)∈C)

7. Real numbers are closed under addition.
axaddrcl $p ` ((A∈R∧B ∈R)→ (A+B)∈R)

8. Complex numbers are closed under multiplication.
axmulcl $p ` ((A∈C∧B ∈C)→ (A ·B)∈C)

9. Real numbers are closed under multiplication.
axmulrcl $p ` ((A∈R∧B ∈R)→ (A ·B)∈R)

10. Addition of complex numbers is commutative.
axaddcom $p ` ((A∈C∧B ∈C)→ (A+B) = (B+A))

11. Multiplication of complex numbers is commutative.
axmulcom $p ` ((A∈C∧B ∈C)→ (A ·B) = (B ·A))

12. Addition of complex numbers is associative.
axaddass $p ` ((A∈C∧B ∈C∧C ∈C)→ ((A+B) +C) = (A+ (B

+C)))
13. Multiplication of complex numbers is associative.
axmulass $p ` ((A∈C∧B ∈C∧C ∈C)→ ((A ·B) ·C) = (A · (B ·C

)))
14. Multiplication distributes over addition for complex numbers.
axdistr $p ` ((A∈C∧B ∈C∧C ∈C)→ (A · (B+C)) = ((A ·B) +

(A ·C)))
15. One and zero are distinct.
ax1ne0 $p ` 1 6= 0

16. Zero is an identity element for addition.
ax0id $p ` (A∈C→ (A+ 0) =A)

17. One is an identity element for multiplication.
ax1id $p ` (A∈C→ (A · 1) =A)

18. Every complex number has a negative.

82 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

axnegex $p ` (A∈C→∃x∈C (A+x) = 0)
19. Every nonzero complex number has a reciprocal.
axrecex $p ` (A∈C→ (A 6= 0→∃x∈C (A ·x) = 1))

20. Every real number has a negative.
axrnegex $p ` (A∈R→∃x∈R (A+x) = 0)

21. Every nonzero real number has a reciprocal.
axrrecex $p ` (A∈R→ (A 6= 0→∃x∈R (A ·x) = 1))

22. The square of i equals −1 (expressed as i-squared plus 1 is 0).
axi2m1 $p ` ((i · i) + 1) = 0

23. Ordering on reals satisfies strict trichotomy.
axlttri $p ` ((A∈R∧B ∈R)→ (A<B↔¬ (A=B ∨B<A)))

24. Ordering on reals is transitive.
axlttrn $p ` ((A∈R∧B ∈R∧C ∈R)→ ((A<B ∧B<C)→A<C)

)
25. Ordering on reals is preserved after addition to both sides.
axltadd $p ` ((A∈R∧B ∈R∧C ∈R)→ (A<B→ (C +A)< (C +

B)))
26. The product of two positive reals is positive.
axmulgt0 $p ` ((A∈R∧B ∈R)→ ((0<A∧ 0<B)→ 0< (A ·B)))

27. A complex number can be expressed in terms of two reals.
axcnre $p ` (A∈C→∃x∈R ∃ y ∈RA= (x+ (y · i)))

28. A non-empty, bounded-above set of reals has a supremum.
axsup $p ` ((A⊆R∧A 6=∅∧∃x∈R ∀ y ∈A y<x)→∃x∈R (∀ y ∈A

¬x<y ∧∀ y ∈R (y <x→∃ z ∈A y<z)))

This completes the set of axioms for real and complex numbers. You
may wish to look at how subtraction, division, and decimal numbers are
defined in set.mm, and for fun look at the proof of 2+2 = 4 (theorem 2p2e4

in set.mm).
In set.mm we define the non-negative integers N, the integers Z, and the

rationals Q as subsets of R. This leads the nice inclusion N ⊆ Z ⊆ Q ⊆
R ⊆ C, giving us a uniform framework in which, for example, a property
such as commutativity of complex number addition automatically applies
to integers. The natural numbers N are different from the set ω we defined
earlier, but both satisfy Peano’s postulates.

Complex Number Axioms in Analysis Texts

Most analysis texts construct complex numbers as ordered pairs of reals,
leading to construction-dependent properties that satisfy these axioms but
are not stated in their pure form. (This is also done in set.mm but our
axioms are extracted from that construction.) Other texts will simply state
that R is a “complete ordered subfield of C,” leading to redundant axioms
when this phrase is completely expanded out. In fact I have not seen a text
with the axioms in the explicit form above. It is possible that one or more

3.8. EXPLORING THE SET THEORY DATABASE 83

of the axioms above are redundant or could be made weaker; if you discover
an improvement, please let me know, and I will properly acknowledge your
contribution. Update (Feb. 2005): The third axiom, “0 is a real number,”
is redundant; see the http://metamath.org web site for details.

3.8 Exploring the Set Theory Database

At this point you may wish to study the set.mm file in more detail. Pay
particular attention to the assumptions needed to define wffs (which are not
included above), the variable types ($f statements), and the definitions that
are introduced. Start with some simple theorems in propositional calculus,
making sure you understand in detail each step of a proof. Once you get past
the first few proofs and become familiar with the Metamath language, any
part of the set.mm database will be as easy to follow, step by step, as any
other part—you won’t have to undergo a “quantum leap” in mathematical
sophistication to be able to follow a deep proof in set theory.

Next, you may want to explore how concepts such as natural numbers
are defined and described. This is probably best done in conjunction with
standard set theory textbooks, which can help give you a higher-level un-
derstanding. The set.mm database provides references that will get you
started. From there, you will be on your way towards a very deep, rigorous
understanding of abstract mathematics.

The Metamath program can help you peruse a Metamath database,
whether you are trying to figure out how a certain step follows in a proof
or just have a general curiosity. We will go through some examples of the
commands, using the set.mm database provided with the Metamath soft-
ware. These should help get you started. See Chapter 5 for a more detailed
description of the commands. Note that we have included the full spelling
of all commands to prevent ambiguity with future commands. In practice
you may type just the characters needed to specify each command keyword
unambiguously, often just one or two characters per keyword, and you don’t
need to type them in upper case.

First run the Metamath program as described earlier. You should see
the MM> prompt. Read in the set.mm file:

MM> read set.mm

Reading source file "set.mm"...

73689 lines (3543983 characters) were read from "set.mm".

The source has 21443 statements; 417 are $a and 5989 are $p.

No errors were found. However, proofs were not checked.

Type VERIFY PROOF * if you want to check them.

Let’s check the database integrity. This may take a minute or two to run
if your computer is slow.

http://metamath.org

84 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

MM> verify proof *

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

..

All proofs in the database were verified in 2.84 s.

No errors were reported, so every proof is correct.
You need to know the names (labels) of theorems before you can look at

them. Often just examining the database file(s) with a text editor is the best
approach. In set.mm there are many detailed comments, especially near the
beginning, that can help guide you. The search command in the Metamath
program is also handy. The comments qualifier will list the statements whose
associated comment (the one immediately before it) contain a string you give
it. For example, if you are studying Enderton’s Elements of Set Theory [16]
you may want to see the references to it in the database. The search string
enderton is not case sensitive. (This will not show you all the database
theorems that are in Enderton’s book because there is usually only one
citation for a given theorem, which may appear in several textbooks.)

MM> search * "enderton" / comments

3332 df-ral $a "...niversal quantification. Enderton, p. 22."

3333 df-rex $a "...stential quantification. Enderton, p. 22."

4828 df-tp $a "...of classes. Definition of Enderton, p. 19."

5200 ssuniss $p "...nd union. Exercise 5 of Enderton, p. 26."

5217 opeluu $p "...air belongs. Lemma 3D of Enderton, p. 41."

(etc.)

Or you may want to see what theorems have something to do with con-
junction (logical and). The quotes around the search string are optional
when there’s no ambiguity.

MM> search * conjunction / comments

634 wa $a "...wff definition to include conjunction (’and’)."

636 df-an $a "Define conjunction (’and’)."

654 iman $p "Express implication in terms of conjunction."

655 annim $p "Express conjunction in terms of implication."

687 pm3.2 $p "... antecedents with conjunction. Theorem *..."

751 anor $p "Conjunction in terms of disjunction (de Morg..."

(etc.)

Now we will start to look at some details. Let’s look at the first axiom
of propositional calculus.

MM> show statement ax-1/full

MM> sh st ax-1/full

3.8. EXPLORING THE SET THEORY DATABASE 85

Statement 19 is located on line 881 of the file "set.mm".

"Axiom _Simp_. Axiom A1 of [Margaris] p. 49. One of the 3

axioms of propositional calculus. The 3 axioms are also

...

19 ax-1 $a |- (ph -> (ps -> ph)) $.

Its mandatory hypotheses in RPN order are:

wph $f wff ph $.

wps $f wff ps $.

The statement and its hypotheses require the variables: ph

ps

The variables it contains are: ph ps

Compare this to ax-1 on p. 64. You can see that the symbol ph is
the ascii notation for ϕ, etc. To see the mathematical symbols for any
expression you may typeset it in LATEX (type help tex for instructions) or,
easier, just use a text editor to look at the comments where symbols are first
introduced in set.mm. The hypotheses wph and wps required by ax-1 mean
that variables ph and ps must be wffs.

Next we’ll pick a simple theorem of propositional calculus, the Principle
of Identity, which is proved directly from the axioms. We’ll look at the
statement then its proof.

MM> show statement id1/full

Statement 36 is located on line 968 of the file "set.mm".

"Principle of identity. Theorem *2.08 of Whitehead and

Russell. This version is proved directly from the axioms

for demonstration purposes."

id1 $p |- (ph -> ph) $= ... $.

Its mandatory hypotheses in RPN order are:

wph $f wff ph $.

Its optional hypotheses are: wps wch wth wet

The statement and its hypotheses require the variables: ph

These additional variables are allowed in its proof: ps ch

th et

The variables it contains are: ph

The optional variables ps, ch, etc. are available for use in a proof of
this statement if we wish, and were we to do so we would make use of
optional hypotheses wps, wch, etc. (See Section 4.2.5 for the meaning of
“optional hypothesis.”) The reason these show up in the statement display
is that statement id1 happens to be in their scope (see Section 4.2.8 for
the definition of “scope”), but in fact in propositional calculus we will never
make use of optional hypotheses or variables. This becomes important after
quantifiers are introduced, where “dummy” variables are often needed in the
middle of a proof.

86 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

Let’s look at the proof of statement id1. We’ll suppress the “non-
essential” steps that construct the wffs.

MM> show proof id1/essential/lemmon/renumber

1 ax-2 $a |- ((ph -> ((ph -> ph) -> ph)) ->

((ph -> (ph -> ph)) -> (ph -> ph)

))

2 ax-1 $a |- (ph -> ((ph -> ph) -> ph))

3 1,2 ax-mp $a |- ((ph -> (ph -> ph)) -> (ph -> ph

))

4 ax-1 $a |- (ph -> (ph -> ph))

5 3,4 ax-mp $a |- (ph -> ph)

If you have read Section 2.3, you’ll know how to interpret this proof.
Step 2, for example, is an application of axiom ax-1. This proof is identical
to the one in Hamilton’s Logic for Mathematicians [19, p. 32].

You may want to look at what substitutions are made into ax-1 to arrive
at step 2. The command to do this needs to know the “real” step number,
so we’ll display the proof again without the renumber qualifier.

MM> show proof id1/lemmon/essential

18 ax-2 $a |- ((ph -> ((ph -> ph) -> ph)) ->

((ph -> (ph -> ph)) -> (ph -> ph)

))

21 ax-1 $a |- (ph -> ((ph -> ph) -> ph))

22 18,21 ax-mp $a |- ((ph -> (ph -> ph)) -> (ph -> ph

))

25 ax-1 $a |- (ph -> (ph -> ph))

26 22,25 ax-mp $a |- (ph -> ph)

The “real” step number is 21. Let’s look at its details.

MM> show proof id1 /detailed_step 21

Proof step 21: min=ax-1 $a |- (ph -> ((ph -> ph) -> ph)

)

This step assigns source "ax-1" ($a) to target "min" ($e).

The source assertion requires the hypotheses "wph" ($f, step

19) and "wps" ($f, step 20). The parent assertion of the

target hypothesis is "ax-mp" ($a, step 22).

The source assertion before substitution was:

ax-1 $a |- (ph -> (ps -> ph))

The following substitutions were made to the source

assertion:

Variable Substituted with

ph ph

ps (ph -> ph)

3.8. EXPLORING THE SET THEORY DATABASE 87

The target hypothesis before substitution was:

min $e |- ph

The following substitution was made to the target hypothesis:

Variable Substituted with

ph (ph -> ((ph -> ph) -> ph))

This shows the substitutions made to the variables in ax-1. References
are made to steps 19 and 20 which are not shown in our proof display. To
see these steps, you can display the proof without the essential qualifier.

Let’s look at a slightly more advanced proof of propositional calculus.
Note that /\ is the symbol for ∧ (logical and, also called conjunction).

MM> show statement prth/full

Statement 1521 is located on line 4730 of the file "set.mm".

"Theorem *3.47 of Whitehead and Russell, called ’praeclarum

theorema’ by Leibniz."

prth $p |- (((ph -> ps) /\ (ch -> th)) -> ((ph /\

ch) -> (ps /\ th))) $= ... $.

Its mandatory hypotheses in RPN order are:

wph $f wff ph $.

wps $f wff ps $.

wch $f wff ch $.

wth $f wff th $.

Its optional hypotheses are: wet

The statement and its hypotheses require the variables: ph

ps ch th

These additional variables are allowed in its proof: et

The variables it contains are: ph ps ch th

MM> show proof prth/essential/lemmon/renumber

1 pm3.2 $p |- (ps -> (th -> (ps /\ th)))

2 1 syl3dt $p |- (ps -> ((ch -> th) -> (ch -> (ps

/\ th))))

3 2 syl3 $p |- ((ph -> ps) -> (ph -> ((ch -> th

) -> (ch -> (ps /\ th)))))

4 3 com23 $p |- ((ph -> ps) -> ((ch -> th) -> (

ph -> (ch -> (ps /\ th)))))

5 4 impa $p |- (((ph -> ps) /\ (ch -> th)) ->

(ph -> (ch -> (ps /\ th))))

6 impexp $p |- (((ph /\ ch) -> (ps /\ th)) <->

(ph -> (ch -> (ps /\ th))))

7 5,6 sylibr $p |- (((ph -> ps) /\ (ch -> th)) ->

((ph /\ ch) -> (ps /\ th)))

There are references to a lot of unfamiliar statements. To see what they
are, you may type the following:

88 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

MM> show proof prth/statement_summary/essential

Summary of statements used in the proof of "prth":

Statement "syl3" is located on line 355 of the file "set.mm".

"Inference adding common antecedents in an implication."

syl3.1 $e |- (ph -> ps) $.

syl3 $p |- ((ch -> ph) -> (ch -> ps)) $= ... $.

Statement "syl3dt" is located on line 438 of the file

"set.mm".

"Deduction adding nested antecedents."

syl3dt.1 $e |- (ph -> (ps -> ch)) $.

syl3dt $p |- (ph -> ((th -> ps) -> (th -> ch))) $=

... $.

(etc.)

Of course you can look at each of these statements and their proofs, and
so on, back to the axioms of propositional calculus if you wish.

The search command is useful for finding statements when you know all
or part of their contents. The following example finds all statements con-
taining ph -> ps followed by ch -> th. The $* is a wildcard that matches
anything; the $ before the * prevents conflicts with math symbol token
names. The * after SEARCH is also a wildcard that in this case means “match
any label.”

MM> SEARCH * "ph -> ps $* ch -> th"

1521 prth $p |- (((ph -> ps) /\ (ch -> th)) -> ((ph

/\ ch) -> (ps /\ th)))

1522 pm3.48 $p |- (((ph -> ps) /\ (ch -> th)) -> ((

ph \/ ch) -> (ps \/ th)))

1739 elimant $p |- (((ph -> ps) /\ ((ps -> ch) -> (ph

-> th))) -> (ph -> (ch -> th)))

Three statements, prth, pm3.48, and elimant, were found to match.
To see what axioms and definitions prth ultimately depends on for its

proof, you can have the program backtrack through the hierarchy of theo-
rems and definitions.

MM> show trace_back prth /essential/axioms

Statement "prth" assumes the following axioms ($a

statements):

ax-1 ax-2 ax-3 ax-mp df-bi df-an

Note that the 3 axioms of propositional calculus and the modus ponens
rule are needed (as expected); in addition, there are a couple of definitions

3.8. EXPLORING THE SET THEORY DATABASE 89

that are used along the way. Note that Metamath makes no distinction
between axioms and definitions. In set.mm they have been distinguished
artificially by prefixing their labels with ax- and df- respectively. For ex-
ample, df-an defines conjunction (logical and), which is represented by the
symbol /\. Section 4.5 discusses the philosophy of definitions, and the Meta-
math language takes a particularly simple, conservative approach by using
the $a statement for both axioms and definitions.

You can also have the program compute how many steps a proof has if
we were to follow it all the way back to $a statements.

MM> show trace_back prth /essential/count_steps

The statement’s actual proof has 5 steps. Backtracking, a

total of 55 different subtheorems are used. The statement

and subtheorems have a total of 196 actual steps. If

subtheorems used only once were eliminated, there would be a

total of 25 subtheorems, and the statement and subtheorems

would have a total of 143 steps. The maximum path length is

20. A longest path is: prth <- imp4b <- imp4a <- impexp <-

imbi1i <- impbi <- bi3 <- expi <- expt <- pm3.2im <- con2d <-

con2 <- nega <- pm2.18 <- pm2.43i <- pm2.43 <- pm2.27 <-

com12 <- syl <- a1i <- a1i.1 .

This tells us that we would have to inspect 196 steps if we want to verify
the proof completely starting from the axioms. A few more statistics are also
shown. There are one or more paths back to axioms that are the longest;
this command ferrets out one of them and shows it to you. There may be a
sense in which the longest path length is related to how “deep” the theorem
is.

Finally, we might be curious about what proofs depend on the theorem
prth. If it is never used later on, we could eliminate it as redundant if it
has no intrinsic interest by itself.

MM> show usage prth

Statement "prth" is directly referenced in the proofs of 4

statements:

anim12d mo 2mo ssxp tfrlem5 climunii climadd

Thus prth is used by 7 proofs, and indirectly by many more that make
use of those proofs, and so on. (The /recursive qualifier gives you all of
them.)

3.8.1 A Note on “Compact” Proof Format

The present version of Metamath (0.07.30) will display proofs in a “compact”
format whenever the proof is stored in compressed format in the database.
It may be be slightly confusing unless you know how to interpret it. (A

90 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

future version may eliminate this format from displays.) For example, if
you display the complete proof of theorem id1 it will start off as follows:

MM> show proof id1 /lemmon/all

1 wph $f wff ph

2 wph $f wff ph

3 wph $f wff ph

4 2,3 wi @1: $a wff (ph -> ph)

5 1,4 wi @2: $a wff (ph -> (ph -> ph))

6 @1 $a wff (ph -> ph)

etc.

Step 4 has a “local label,” @1, assigned to it. Later on, at step 6, the
label @1 is referenced instead of displaying the explicit proof for that step.
This technique takes advantage of the fact that steps in a proof often repeat,
especially during the construction of wffs. The compact format reduces the
number of steps in the proof display and may actually be preferred by some
people, which is one reason that it is still displayed by the program.

If you want to see the normal format with the “true” step numbers, you
can use the following workaround:

MM> save proof id1 /normal

The proof of "id1" has been reformatted and saved internally.

Remember to use WRITE SOURCE to save it permanently.

MM> show proof id1 /lemmon/all

1 wph $f wff ph

2 wph $f wff ph

3 wph $f wff ph

4 2,3 wi $a wff (ph -> ph)

5 1,4 wi $a wff (ph -> (ph -> ph))

6 wph $f wff ph

7 wph $f wff ph

8 6,7 wi $a wff (ph -> ph)

etc.

Note that the original 6 steps are now 8 steps. However, the format is
now the same as that described in Chapter 2.

Chapter 4

The Metamath Language

Thus mathematics may be defined as the subject in which we
never know what we are talking about, nor whether what we are
saying is true.

Bertrand Russell1

Probably the most striking feature of the Metamath language is its al-
most complete absence of hard-wired syntax. Metamath does not under-
stand any mathematics or logic other than that needed to construct finite
sequences of symbols according to a small set of simple, built-in rules. The
only rule it uses in a proof is the substitution of an expression (symbol
sequence) for a variable, subject to a simple constraint to prevent bound-
variable clashes. The primitive notions built into Metamath involve the
simple manipulation of finite objects (symbols) that we as humans can eas-
ily visualize and that computers can easily deal with. They seem to be
just about the simplest notions possible that are required to do standard
mathematics.

This chapter serves as a reference manual for the Metamath language. It
covers the tedious technical details of the language, some of which you may
wish to skim in a first reading. On the other hand, you should pay close
attention to the defined terms in boldface; they have precise meanings that
are important to keep in mind for later understanding. It may be best to first
become familiar with the examples in Chapter 2 to gain some motivation
for the language.

If you have some knowledge of set theory, you may wish to study this
chapter in conjunction with the formal set-theoretical description of the
Metamath language in Appendix C.

We will use the name “Metamath” to mean either the Metamath com-
puter language or the Metamath software associated with the computer

1[52, p. 84]

91

92 CHAPTER 4. THE METAMATH LANGUAGE

language. We will not distinguish these two when the context is clear.
The next section contains the complete specification of the Metamath

language.2 It serves as an authoritative reference and presents the syntax
in enough detail to write a parser and proof verifier. The specification is
terse and it is probably hard to learn the language directly from it, but we
include it here for those impatient people who prefer to see everything up
front before looking at verbose expository material. Later sections explain
this material and provide examples. We will repeat the definitions in those
sections, and you may skip the next section at first reading and proceed to
Section 4.2 (p. 96). You may want to come back to it to clarify any fine
points.

4.1 Specification of the Metamath Language

Sometimes one has to say difficult things, but one ought to say
them as simply as one knows how.

G. H. Hardy3

4.1.1 Preliminaries

A Metamath database is built up from a top-level source file together with
any source files that are brought in through file inclusion commands (see
below). The only characters that are allowed to appear in a Metamath
source file are the 94 printable characters on standard ascii keyboards,
which are digits, upper and lower case letters, and the following 32 special
characters

‘ ~ ! @ # $ % ^ & * () - _ = +

[] { } ; : ’ " , . < > / ? \ |

plus the following non-printable (white space) characters: space, tab, car-
riage return, line feed, and form feed. We will use typewriter font to display
the printable characters.

A Metamath database consists of a sequence of three kinds of tokens
separated by white space (which is any sequence of one or more white
space characters). The set of keyword tokens is ${, $}, $c, $v, $f, $e,
$d, $a, $p, $., $=, $(, $), $[, and $]. The last four are called auxiliary

2The current version of the Metamath program (0.07.30) implements an older speci-
fication with a slightly more general syntax than described here. Among the differences:
missing white space around keyword tokens is sometimes tolerated, and a variable may
be used before its type is specified by a $f statement (this “feature” should never be
used in practice). A future version of the program is expected to conform to the current
specification.

3As quoted in [14], p. 273

4.1. SPECIFICATION OF THE METAMATH LANGUAGE 93

or preprocessing keywords. A label token consists of any combination of
letters, digits, and the characters hyphen, underscore, and period. A math
symbol token may consist of any combination of the 93 printable standard
ascii characters other than $. All tokens are case-sensitive.

4.1.2 Preprocessing

$(begins a comment and $) ends a comment. Comments may contain
any of the 94 printable characters and white space, except they may not
contain the 2-character sequences $(or $). Comments are ignored (treated
like white space) for the purpose of parsing.

Two special characters inside comments, ‘ and ~, control the typesetting
of comments and are discussed on p. 119. They may be ignored for the
purpose of parsing.

A file inclusion command consists of $[followed by a file name fol-
lowed by $]. The file name may not contain a $ or white space. The file
must exist. The case-sensitivity of its name follows the conventions of the
operating system. The contents of the file replace the inclusion command.
Included files may include other files. Only the first reference to a given file
is included; any later references to the same file (whether in the top-level
file or in included files) cause the inclusion command to be ignored (treated
like white space). A file self-reference is ignored, as is any reference to the
top-level file.

Like all tokens, the $(, $), $[, and $] keywords must be surrounded by
white space.

4.1.3 Basic Syntax

After preprocessing, a database will consist of a sequence of statements.
It may contain only the statement types defined below. These are the scop-
ing statements ${ and $}, along with the $c, $v, $f, $e, $d, $a, and $p

statements.
A scoping statement consists only of its keyword, ${ or $}. ${ begins

a block and a matching $} ends the block. Every ${ must have a matching
$}. Defining it recursively, we say a block contains a sequence of zero or
more tokens other than ${ and $} and possibly other blocks. There is an
outermost block not bracketed by ${ $}; the end of the outermost block
is the end of the database.

A $v or $c statement consists of the keyword token $v or $c respec-
tively, followed by one or more math symbols, followed by $. . These state-
ments declare the math symbols to be variables or constants respectively.
The same math symbol may not occur twice in a given $v or $c statement.

A math symbol becomes active when declared and stays active until the
end of the block in which it is declared. A variable may not be declared a
second time while it is active, but it may be declared again (as a variable, but

94 CHAPTER 4. THE METAMATH LANGUAGE

not as a constant) after it becomes inactive. A constant must be declared
in the outermost block and may not be declared a second time.4

A $f statement consists of a label, followed by $f, followed by an active
constant, followed by an active variable, followed by $. . A $e statement
consists of a label, followed by $e, followed by an active constant, followed
zero or more active math symbols, followed by $. . A hypothesis is a $f

or $e statement.
A simple $d statement consists of $d, followed by two different active

variables, followed by $. . A compound $d statement consists of $d,
followed by three or more variables (all different), followed by $. . The
order of the variables in a $d statement is unimportant. A compound $d

statement is equivalent to a set of simple $d statements, one for each possible
pair of variables occurring in the compound $d statement. Henceforth in this
specification we shall assume all $d statements are simple. A $d statement
is also called a disjoint (or distinct) variable restriction.

A $a statement consists of a label, followed by $a, followed by an active
constant, followed by zero or more active math symbols, followed by $. . A
$p statement consists of a label, followed by $p, followed by an active
constant, followed by zero or more active math symbols, followed by $=,
followed by a sequence of labels, followed by $. . An assertion is a $a or
$p statement.

A $f, $e, or $d statement is active from the place it occurs until the
end of the block it occurs in. A $a or $p statement is active from the place
it occurs through the end of the database.

There may not be two active $f statements containing the same vari-
able. Each variable in a $e, $a, or $p statement must exist in an active $f

statement.5

Each label token must be unique.
No label token may match any math symbol token.6

The set of mandatory variables associated with an assertion is the set
of (zero or more) variables in the assertion and in any active $e statements.
The (possibly empty) set of mandatory hypotheses is the set of all active
$f statements containing mandatory variables, together with all active $e

statements.
The set of mandatory $d statements associated with an assertion are

those active $d statements whose variables are both among the assertion’s
mandatory variables.

4The rules for redeclaration may become more general in the future; see footnote on
p. 114.

5This requirement can greatly simplify the unification algorithm (substitution calcu-
lation) required by proof verification.

6(Added June 24, 2006) This restriction did not exist in earlier versions of this specifi-
cation. While not theoretically necessary, it is imposed to make it easier to write certain
parsers.

4.1. SPECIFICATION OF THE METAMATH LANGUAGE 95

4.1.4 Proof Verification

The sequence of labels between the $= and $. tokens in a $p statement is
a proof. Each label in a proof must be the label of an active statement
other than the $p statement itself; thus a label must refer either to an active
hypothesis of the $p statement or to an earlier assertion.

An expression is a sequence of math symbols. A substitution map
associates a set of variables with a set of expressions. It is acceptable for
a variable to be mapped to an expression containing it. A substitution
is the simultaneous replacement of all variables in one or more expressions
with the expressions that the variables map to.

A proof is scanned in order of its label sequence. If the label refers
to an active hypothesis, the expression in the hypothesis is pushed onto a
stack. If the label refers to an assertion, a (unique) substitution must exist
that, when made to the mandatory hypotheses of the referenced assertion,
causes them to match the topmost (i.e. most recent) entries of the stack, in
order of occurrence of the mandatory hypotheses, with the topmost stack
entry matching the last mandatory hypothesis of the referenced assertion.
As many stack entries as there are mandatory hypotheses are then popped
from the stack. The same substitution is made to the referenced assertion,
and the result is pushed onto the stack. After the last label in the proof is
processed, the stack must have a single entry that matches the expression
in the $p statement containing the proof.

A proof may contain a ? in place of a label to indicate an unknown
step (Section 4.4.5). A proof verifier may ignore any proof containing ? but
should warn the user that the proof is incomplete.

A compressed proof is an alternate proof notation described in Appen-
dix B; also see references to “compressed proof” in the Index. Compressed
proofs are a Metamath language extension which a complete proof verifier
should be able to parse and verify.

Verifying Disjoint Variable Restrictions

Each substitution made in a proof must be checked to verify that any disjoint
variable restrictions are satisfied, as follows.

If two variables replaced by a substitution exist in a mandatory $d state-
ment of the assertion referenced, the two expressions resulting from the
substitution must meet satisfy the following conditions. First, the two ex-
pressions must have no variables in common. Second, each possible pair of
variables, one from each expression, must exist in an active $d statement of
the $p statement containing the proof.

This ends the specification of the Metamath language.

96 CHAPTER 4. THE METAMATH LANGUAGE

4.2 The Basic Keywords

Our expository material begins here.
Like most computer languages, Metamath takes its input from one or

more source files which contain characters expressed in the standard ascii
(American Standard Code for Information Interchange) code for computers.
A source file consists of a series of tokens, which are strings of printable
characters (from the set of 94 shown on p. 92) separated by white space
(spaces, tabs, carriage returns, line feeds, and form feeds). Any string con-
sisting only of these characters is treated the same as a single space. The
printable characters that Metamath recognizes are the 94 characters on stan-
dard ascii keyboards.

Metamath has the ability to join several files together to form its input
(Section 4.4.3). We call the aggregate contents of all the files after they have
been joined together a database to distinguish it from an individual source
file. The tokens in a database consist of keywords, which are built into the
language, together with two kinds of user-defined tokens called labels and
math symbols. (Often we will simply say symbol instead of math symbol
for brevity). The set of basic keywords is $c, $v, $e, $f, $d, $a, $p, $=,
$., ${, and $}. This is the complete set of syntactical elements of what
we call the basic language of Metamath, and with them you can express
all of the mathematics that were intended by the design of Metamath. You
should make it a point to become very familiar with them. Table 4.1 lists
the basic keywords along with a brief description of their functions. For
now, this description will give you only a vague notion of what the keywords
are for; later we will describe the keywords in detail.

Table 4.1: Summary of the basic Metamath keywords

Keyword Description

$c Constant symbol declaration
$v Variable symbol declaration
$d Disjoint variable restriction
$f Variable-type (“floating”) hypothesis
$e Logical (“essential”) hypothesis
$a Axiomatic assertion
$p Provable assertion
$= Start of proof in $p statement
$. End of the above statement types
${ Start of block
$} End of block

There are some additional keywords, called auxiliary keywords that

4.2. THE BASIC KEYWORDS 97

help make Metamath more practical. These are part of the extended lan-
guage. They provide you with a means to put comments into a Metamath
source file and reference other source files. We will introduce these in later
sections. Table 4.2 summarizes them so that you can recognize them now if
you want to peruse some source files while learning the basic keywords.

Table 4.2: Auxiliary Metamath keywords

Keyword Description

$(Start of comment
$) End of comment
$[Start of included source file name
$] End of included source file name

Unlike those in some computer languages, the keywords are short two-
character sequences rather than English-like words. While this may make
them slightly more difficult to remember at first, their brevity allows them
to blend in with the mathematics being described, not distract from it, like
punctuation marks.

4.2.1 User-Defined Tokens

As you may have noticed, all keywords begin with the $ character. This
mundane monetary symbol is not ordinarily used in higher mathematics
(outside of grant proposals), so we have appropriated it to distinguish the
Metamath keywords from ordinary mathematical symbols. The $ character
is thus considered special and may not be used as a character in a user-
defined token. All tokens and keywords are case-sensitive; for example, n
is considered to be a different character from N. Case-sensitivity makes the
available ascii character set as rich as possible.

Math Symbol Tokens

Math symbols are tokens used to represent the symbols that appear in or-
dinary mathematical formulas. They may consist of any combination of the
93 printable ascii characters other than $. Some examples are x, +, (, |-,
!%@?&, and bounded. For readability, it is best to try to make these look as
similar to actual mathematical symbols as possible, within the constraints
of the ascii character set, in order to make the resulting mathematical ex-
pressions more readable.

In the Metamath language, you express ordinary mathematical formu-
las and statements as sequences of math symbols such as 2 + 2 = 4 (five

98 CHAPTER 4. THE METAMATH LANGUAGE

symbols, all constants).7 They may even be English sentences, as in E is

closed and bounded (five symbols)—here E would be a variable and the
other four symbols constants. In principle, a Metamath database could be
constructed to work with almost any unambiguous English-language math-
ematical statement, but as a practical matter the definitions needed to pro-
vide for all possible syntax variations would be cumbersome and distracting
and possibly have subtle pitfalls accidentally built in. We generally rec-
ommend that you express mathematical statements with compact standard
mathematical symbols whenever possible and put their English-language
descriptions in comments. Axioms and definitions ($a statements) are the
only places where Metamath will not detect an error, and doing this will
help reduce the number of definitions needed.

You are free to use any tokens you like for math symbols. Appendix A
recommends token names to use for symbols in set theory, and we suggest
you adopt these in order to be able to include the set.mm set theory database
in your database. For printouts, you can convert the tokens in a database to
standard mathematical symbols with the LATEX typesetting program. The
Metamath command open tex filename produces output that can be read
by LATEX. The correspondence between tokens and the actual symbols is
made by latexdef statements inside of a special database comment tagged
with $t. You can edit this comment to change the definitions or add new
ones. Appendix A describes how to do this in more detail.

Label Tokens

Label tokens are used to identify Metamath statements for later reference.
Label tokens may contain only letters, digits, and the three characters pe-
riod, hyphen, and underscore:

. - _

A label is declared by placing it immediately before the keyword of the
statement it identifies. For example, the label axiom.1 might be declared
as follows:

axiom.1 $a |- x = x $.

Each $e, $f, $a, and $p statement in a database must have a label
declared for it. No other statement types may have label declarations. Every
label must be unique.

A label (and the statement it identifies) is referenced by including the
label between the $= and $. keywords in a $p statement. The sequence
of labels between these two keywords is called a proof. An example of a
statement with a proof that we will encounter later (Section 4.3) is

7To eliminate ambiguity with other expressions, this is expressed in the set theory
database set.mm as |- (2 + 2) = 4 , whose LATEX equivalent is ` (2 + 2) = 4. The `
means “is a theorem” and the parentheses allow explicit associative grouping.

4.2. THE BASIC KEYWORDS 99

wnew $p wff (s -> (r -> p))

$= ws wr wp w2 w2 $.

You don’t have to know what this means just yet, but you should know
that the label wnew is declared by this $p statement and that the labels ws,
wr, wp, and w2 are assumed to have been declared earlier in the database
and are referenced here.

4.2.2 Constants and Variables

An expression is any sequence of math symbols, possibly empty.
The basic Metamath language has two kinds of math symbols: con-

stants and variables. In a Metamath proof, a constant may not be sub-
stituted with any expression. A variable can be substituted with any ex-
pression. This sequence may include other variables and may even include
the variable being substituted. This substitution takes place when proofs
are verified, and it will be described in Section 4.3. The $f statement (de-
scribed later in Section 4.2.5) is used to specify the type of a variable (i.e.
what kind of variable it is) and give it a meaning typically associated with
a “metavariable”8 in ordinary mathematics; for example, a variable may be
specified to be a wff or well-formed formula (in logic), a set (in set theory),
or a non-negative integer (in number theory).

4.2.3 The $c and $v Declaration Statements

Constants are introduced or declared with $c statements, and variables are
declared with $v statements. A simple declaration statement introduces a
single constant or variable. Its syntax is one of the following:

$c math-symbol $.
$v math-symbol $.

The notation math-symbol means any math symbol token.
Some examples of simple declaration statements are:

$c + $.

$c -> $.

$c ($.

$v x $.

$v y2 $.

The characters in a math symbol being declared are irrelevant to Meta-
math; for example, we could declare a right parenthesis to be a variable,

8A metavariable is a variable that ranges over the syntactical elements of the object
language being discussed; for example, one metavariable might represent a variable of
the object language and another metavariable might represent a formula in the object
language.

100 CHAPTER 4. THE METAMATH LANGUAGE

$v) $.

although this would be unconventional.
A compound declaration statement is a shorthand for declaring several

symbols at once. Its syntax is one of the following:

$c math-symbol · · · math-symbol $.
$v math-symbol · · · math-symbol $.

Here, the ellipsis (. . .) means any number of math-symbol s.
An example of a compound declaration statement is:

$v x y mu $.

This is equivalent to the three simple declaration statements

$v x $.

$v y $.

$v mu $.

There are certain rules on where in the database math symbols may be
declared, what sections of the database are aware of them (i.e. where they
are “active”), and when they may be declared more than once. These will
be discussed in Section 4.2.8 and specifically on p. 113.

4.2.4 The $d Statement

The $d statement is called a disjoint-variable restriction. The syntax of
the simple version of this statement is

$d variable variable $.

where each variable is a previously declared variable and the two variable s
are different. (More specifically, each variable must be an active variable,
which means there must be a previous $v statement whose scope includes
the $d statement. These terms will be defined when we discuss scoping
statements in Section 4.2.8.)

In ordinary mathematics, formulas may arise that are true if the vari-
ables in them are distinct, but become false when those variables are made
identical. For example, the formula in logic ∃xx 6= y, which means “for a
given y, there exists an x that is not equal to y,” is true in most mathemat-
ical theories (namely all non-trivial theories, i.e. those that describe more
than one individual, such as arithmetic). However, if we substitute y with
x, we obtain ∃xx 6= x, which is always false, as it means “there exists some-
thing that is not equal to itself.”9 The $d statement allows you to specify

9If you are a logician, you will recognize this as the improper substitution of a free
variable with a bound variable. Metamath makes no inherent distinction between free
and bound variables; instead, you let Metamath know what substitutions are permissible
by using $d statements in the right way in your axiom system.

4.2. THE BASIC KEYWORDS 101

a restriction that forbids the substitution of one variable with another. In
this case, we would use the statement

$d x y $.

to specify this restriction.
The order in which the variables appear in a $d statement is not impor-

tant. We could also use

$d y x $.

The $d statement is actually more general than this, as the “disjoint”
in its name suggests. The full meaning is that if any substitution is made
to its two variables (during the course of a proof that references a $a or $p

statement associated with the $d), the two expressions that result from the
substitution must have no variables in common. In addition, each possi-
ble pair of variables, one from each expression, must be in a $d statement
associated with the statement being proved. (This requirement forces the
statement being proved to “inherit” the original disjoint variable restriction.)

For example, suppose u is a variable. If the restriction

$d A B $.

has been specified for a theorem referenced in a proof, we may not substitute
A with a + u and B with b + u because these two symbol sequences have
the variable u in common. Furthermore, if a and b are variables, we may
not substitute A with a and B with b unless we have also specified $d a b

for the theorem being proved; in other words, the $d property associated
with a pair of variables must be effectively preserved after substitution.

The $d statement does not mean “the two variables may not be sub-
stituted with the same thing,” as you might think at first. For example,
substituting each of A and B in the above example with identical symbol
sequences consisting only of constants does not cause a disjoint variable
conflict, because two symbol sequences have no variables in common (since
they have no variables, period). Similarly, a conflict will not occur by substi-
tuting the two variables in a $d statement with the empty symbol sequence.

The $d statement does not have a direct counterpart in ordinary mathe-
matics, partly because the variables of Metamath are not really the same as
the variables of ordinary mathematics but rather are metavariables ranging
over them (as well as over other kinds of symbols and groups of symbols).
Depending on the situation, we may informally interpret the $d statement
in different ways. Suppose, for example, that x and y are variables ranging
over numbers (more precisely, that x and y are metavariables ranging over
variables that range over numbers), and that ph (ϕ) and ps (ψ) are variables
(more precisely, metavariables) ranging over formulas. We can make the fol-
lowing interpretations that correspond to the informal language of ordinary
mathematics:

102 CHAPTER 4. THE METAMATH LANGUAGE

$d x y $. means “assume x and y are distinct variables.”
$d x ph $. means “assume x does not occur in ϕ.”
$d ph ps $. means “assume ϕ and ψ have no variables

in common.”

Compound $d Statements

The compound version of the $d statement is a shorthand for specifying
several variables whose substitutions must be pairwise disjoint. Its syntax
is:

$d variable · · · variable $.

Here, variable represents the token of a previously declared variable (specif-
ically, an active variable) and all variable s are different. The compound $d

statements is internally broken up by Metamath into one simple $d state-
ment for each possible pair of variables in the original $d statement. For
example,

$d w x y z $.

is equivalent to

$d w x $.

$d w y $.

$d w z $.

$d x y $.

$d x z $.

$d y z $.

Two or more simple $d statements specifying the same variable pair
are internally combined into a single $d statement. Thus the set of three
statements

$d x y $. $d x y $. $d y x $.

is equivalent to

$d x y $.

Similarly, compound $d statements, after being internally broken up,
internally have their common variable pairs combined. For example the set
of statements

$d x y A $. $d x y B $.

is equivalent to

$d x y $. $d x A $. $d y A $. $d x y $. $d x B $. $d y B $.

4.2. THE BASIC KEYWORDS 103

which is equivalent to

$d x y $. $d x A $. $d y A $. $d x B $. $d y B $.

Metamath automatically verifies that all $d restrictions are met whenever
it verifies proofs. $d statements are never referenced directly in proofs (this
is why they do not have labels), but Metamath is always aware of which ones
must be satisfied (i.e. are active) and will notify you with an error message
if any violation occurs.

To illustrate how Metamath detects a missing $d statement, we will look
at the following example from the set.mm database.

$d x z $. $d y z $.

$(Theorem to add distinct quantifier to atomic formula. $)

ax17eq $p |- (x = y -> A. z x = y) $=...

This statement has the obvious requirement that z must be distinct from
x in theorem ax17eq that states x = y → ∀z x = y (well, obvious if you’re
a logician, for otherwise we could conclude x = y → ∀xx = y, which is false
when free variables x and y are equal.).

Let’s look at what happens if we edit the database to comment out this
requirement.

$($d x z $. $) $d y z $.

$(Theorem to add distinct quantifier to atomic formula. $)

ax17eq $p |- (x = y -> A. z x = y) $=...

When it tries to verify the proof, Metamath will tell you that x and z

must be disjoint, because one of its steps references an axiom or theorem
that has this requirement.

MM> verify proof ax17eq

ax17eq ?Error at statement 1918, label "ax17eq", type "$p":

vz wal wi vx vy vz ax-12 vx vy weq vz vx ax-16 vx vy

^^^^^

There is a disjoint variable ($d) violation at proof step 29.

Assertion "ax-16" requires that variables "x" and "y" be

disjoint. But "x" was substituted with "z" and "y" was

substituted with "x". The assertion being proved, "ax17eq",

does not require that variables "z" and "x" be disjoint.

We can see the substitutions into ax-16 with the following command.

MM> show proof ax17eq / detailed_step 29

Proof step 29: pm2.61dd.2=ax-16 $a |- (A. z z = x -> (x =

y -> A. z x = y))

This step assigns source "ax-16" ($a) to target "pm2.61dd.2"

104 CHAPTER 4. THE METAMATH LANGUAGE

($e). The source assertion requires the hypotheses "wph"

($f, step 26), "vx" ($f, step 27), and "vy" ($f, step 28).

The parent assertion of the target hypothesis is "pm2.61dd"

($p, step 36).

The source assertion before substitution was:

ax-16 $a |- (A. x x = y -> (ph -> A. x ph))

The following substitutions were made to the source

assertion:

Variable Substituted with

x z

y x

ph x = y

The target hypothesis before substitution was:

pm2.61dd.2 $e |- (ph -> ch)

The following substitutions were made to the target

hypothesis:

Variable Substituted with

ph A. z z = x

ch (x = y -> A. z x = y)

The disjoint variable restrictions of ax-16 can be seen from the show

statement command. The line that begins “Its mandatory disjoint

variable pairs are:. . . ” lists any $d variable pairs in brackets.

MM> show statement ax-16/full

Statement 3033 is located on line 9338 of the file "set.mm".

"Axiom of Distinct Variables. ..."

ax-16 $a |- (A. x x = y -> (ph -> A. x ph)) $.

Its mandatory hypotheses in RPN order are:

wph $f wff ph $.

vx $f set x $.

vy $f set y $.

Its mandatory disjoint variable pairs are: <x,y>

The statement and its hypotheses require the variables: x y

ph

The variables it contains are: x y ph

Since Metamath will always detect when $d statements are needed for
a proof, you don’t have to worry too much about forgetting to put one in;
it can always be added if you see the error message above. If you put in
unnecessary $d statements, the worse that will happen is that your theorem
might not be as general as it could be, and this may limit its use later on.

On the other hand, when you introduce axioms ($a statements), you
must be very careful to properly specify the necessary associated $d state-
ments since Metamath has no way of knowing whether your axioms are

4.2. THE BASIC KEYWORDS 105

correct. For example, Metamath would have no idea that ax-16, which we
are telling it is an axiom of logic, would lead to contradictions if we omitted
its associated $d statement.

Comment. You may wonder if it is possible to develop standard mathe-
matics in the Metamath language without the $d statement, since it seems
like a nuisance that complicates proof verification. The $d statement is not
needed in certain subsets of mathematics such as propositional calculus.
However, dummy variables and their associated $d statements are impossi-
ble to avoid in proofs in standard first-order logic as well as in the variant
used in set.mm. In fact, there is no upper bound to the number of dummy
variables that might be needed in a proof of a theorem of first-order logic
containing 3 or more variables, as shown by H. Andréka [43]. A first-order
system that avoids them entirely is given in [34]; the trick there is simply
to embed harmlessly the necessary dummy variables into a theorem being
proved so that they aren’t “dummy” anymore, then interpret the result-
ing longer theorem so as to ignore the embedded dummy variables. If this
interests you, the system in set.mm obtained from ax-1 through ax-15 in
set.mm, and deleting ax-16 and ax-17, requires no $d statements but is log-
ically complete in the sense described in [34]. This means it can prove any
theorem of first-order logic as long as we add to the theorem an antecedent
that embeds dummy and any other variables that must be distinct. In a
similar fashion, axioms for set theory can be devised that do not require
distinct variables (contact me if interested). Together, these in principle
allow all of mathematics to be developed under Metamath without a $d

statement, although the length of the resulting theorems will grow as more
and more dummy variables become required in their proofs.

4.2.5 The $f and $e Statements

Metamath has two kinds of hypotheses, the $f or variable-type hypothesis
and the $e or logical hypothesis.10 The letters f and e stand for “floating”
(roughly meaning used only if relevant) and “essential” (meaning always
used) respectively, for reasons that will become apparent when we discuss
frames in Section 4.2.7 and scoping in Section 4.2.8. The syntax of these are
as follows:

label $f constant variable $.

label $e constant math-symbol · · · math-symbol $.

A hypothesis must have a label. The expression in a $e hypothesis consists
of a constant math symbol followed by a sequence of zero or more math
symbols. Each math symbol (including constant and variable) must be a
previously declared constant or variable. (In addition, each math symbol
must be active, which will be covered when we discuss scoping statements
in Section 4.2.8.) You use a $f hypothesis to specify the nature or type of
a variable (such as “let x be an integer”) and use a $e hypothesis to express

10Strictly speaking, the $d statement is also a hypothesis, but it is never directly refer-
enced in a proof, so we call it a restriction rather than a hypothesis to lessen confusion.
The checking for violations of $d restrictions is automatic and built into Metamath’s
proof-checking algorithm.

106 CHAPTER 4. THE METAMATH LANGUAGE

a logical truth (such as “assume x is prime”) that must be established in
order for an assertion requiring it to also be true.

A variable must have its type specified in a $f statement before it may
be used in a $e, $a, or $p statement. There may be only one (active) $f

statement for a given variable. (“Active” is defined in Section 4.2.8.)
In ordinary mathematics, theorems are often expressed in the form “As-

sume P ; then Q,” where Q is a statement that you can derive if you start
with statement P .11 In the Metamath language, you would express math-
ematical statement P as a hypothesis (a $e Metamath language statement
in this case) and statement Q as a provable assertion (a $p statement).

Some examples of hypotheses you might encounter in logic and set theory
are

stmt1 $f wff P $.

stmt2 $f set x $.

stmt3 $e |- (P -> Q) $.

Informally, these would be read, “Let P be a well-formed-formula,” “Let x
be an (individual) variable,” and “Assume we have proved P → Q.” The
turnstile symbol ` is commonly used in logic texts to mean “a proof exists
for.”

To summarize:

• A $f hypothesis tells Metamath the type or kind of its variable. It is
analogous to a variable declaration in a computer language that tells
the compiler that a variable is an integer or a floating-point number.

• The $e hypothesis corresponds to what you would usually call a “hy-
pothesis” in ordinary mathematics.

Before an assertion ($a or $p statement) can be referenced in a proof,
all of its associated $f and $e hypotheses (i.e. those $e hypotheses that are
active) must be satisfied (i.e. established by the proof). The meaning of
“associated” (which we will call mandatory in Section 4.2.7) will become
clear when we discuss scoping later.

4.2.6 Assertions ($a and $p Statements)

There are two types of assertions, $a statements (axiomatic assertions)
and $p statements (provable assertions). Their syntax is as follows:

11A stronger version of a theorem like this would be the single formula P → Q (P
implies Q) from which the weaker version above follows by the rule of modus ponens in
logic. We are not discussing this stronger form here. In the weaker form, we are saying
only that if we can prove P , then we can prove Q. In a logician’s language, if x is the
only free variable in P and Q, the stronger form is equivalent to ∀x(P → Q) (for all x,
P implies Q), whereas the weaker form is equivalent to ∀xP → ∀xQ. The stronger form
implies the weaker, but not vice-versa. To be precise, the weaker form of the theorem is
more properly called an “inference” rather than a theorem.

4.2. THE BASIC KEYWORDS 107

label $a constant math-symbol . . . math-symbol $.
label $p constant math-symbol . . . math-symbol $= proof $.

An assertion always requires a label. The expression in an assertion consists
of a constant followed by a sequence of zero or more math symbols. Each
math symbol, including constant, must be a previously declared constant
or variable. (In addition, each math symbol must be active, which will be
covered when we discuss scoping statements in Section 4.2.8.)

A $a statement is usually a definition of syntax (for example, if P and
Q are wffs then so is (P → Q)), an axiom of ordinary mathematics (for
example, x = x), or a definition of ordinary mathematics (for example,
x 6= y means ¬x = y). A $p statement is a claim that a certain combination
of math symbols follows from previous assertions and is accompanied by a
proof that demonstrates it.

Assertions can also be referenced in (later) proofs in order to derive new
assertions from them. The label of an assertion is used to refer to it in a
proof. Section 4.3 will describe the proof in detail.

Assertions also provide the primary means for communicating the math-
ematical results in the database to people. Proofs (when conveniently dis-
played) communicate to people how the results were arrived at.

The $a Statement

Axiomatic assertions ($a statements) represent the starting points from
which other assertions ($p statements) are derived. Their most obvious
use is for specifying ordinary mathematical axioms, but they are also used
for two other purposes.

First, Metamath needs to know the syntax of symbol sequences that con-
stitute valid mathematical statements. A Metamath proof must be broken
down into much more detail than ordinary mathematical proofs that you
may be used to thinking of (even the “complete” proofs of formal logic).
This is one of the things that makes Metamath a general-purpose language,
independent of any system of logic or even syntax. If you want to use a sub-
stitution instance of an assertion as a step in a proof, you must first prove
that the substitution is syntactically correct (or if you prefer, you must “con-
struct” it), showing for example that the expression you are substituting for
a wff metavariable is a valid wff. The $a statement is used to specify those
combinations of symbols that are considered syntactically valid, such as the
legal forms of wffs.

Second, $a statements are used to specify what are ordinarily thought
of as definitions, i.e. new combinations of symbols that abbreviate other
combinations of symbols. Metamath makes no distinction between axioms
and definitions. Indeed, it has been argued that such distinction should not
be made even in ordinary mathematics; see Section 4.5, which discusses the
philosophy of definitions. Section 3.4 discusses some technical requirements

108 CHAPTER 4. THE METAMATH LANGUAGE

for definitions. In set.mm we adopt the convention of prefixing axiom labels
with ax- and definition labels with df-.

The results that can be derived with the Metamath language are only
as good as the $a statements used as their starting point. We cannot stress
this too strongly. For example, Metamath will not prevent you from spec-
ifying x 6= x as an axiom of logic. It is essential that you scrutinize all $a
statements with great care. Because they are a source of potential pitfalls,
it is best not to add new ones (usually new definitions) casually; rather you
should carefully evaluate each one’s necessity and advantages.

Once you have in place all of the basic axioms and rules of a mathe-
matical theory, the only $a statements that you will be adding will be what
are ordinarily called definitions. In principle, definitions should be in some
sense eliminable from the language of a theory according to some conven-
tion (usually involving logical equivalence or equality). The most common
convention is that any formula that was syntactically valid but not provable
before the definition was introduced will not become provable after the def-
inition is introduced. In an ideal world, definitions should not be present
at all if one is to have absolute confidence in a mathematical result. How-
ever, they are necessary to make mathematics practical, for otherwise the
resulting formulas would be extremely long and incomprehensible. Since the
nature of definitions (in the most general sense) does not permit them to
automatically be verified as “proper,” the judgment of the mathematician
is required to ensure it. (In set.mm effort was made to make almost all def-
initions directly eliminable and thus minimize the need for such judgment.)

If you are not a mathematician, it may be best not to add or change any
$a statements but instead use the mathematical language already provided
in standard databases. This way Metamath will not allow you to make a
mistake (i.e. prove a false result).

4.2.7 Frames

We now introduce the concept of a collection of related Metamath statements
called a frame. Every assertion ($a or $p statement) in the database has an
associated frame.

A frame is a sequence of $d, $f, and $e statements (zero or more of
each) followed by one $a or $p statement, subject to certain conditions
we will describe. For simplicity we will assume that all math symbol tokens
used are declared at the beginning of the database with $c and $v statements
(which are not properly part of a frame). Also for simplicity we will assume
there are only simple $d statements (those with only two variables) and
imagine any compound $d statements (those with more than two variables)
as broken up into simple ones.

A frame groups together those hypotheses (and $d statements) relevant
to an assertion ($a or $p statement). The statements in a frame may or may

4.2. THE BASIC KEYWORDS 109

not be physically adjacent in a database; we will cover this in our discussion
of scoping statements in Section 4.2.8.

A frame has the following properties:

1. The set of variables contained in its $f statements must be identical
to the set of variables contained its $e, $a, and/or $p statements. In
other words, each variable in a $e, $a, or $p statement must have an
associated “variable type” defined for it in a $f statement.

2. No two $f statements may contain the same variable.

3. Each of the two variables in any $d statement must occur in a $f

statement.

4. Any $f statement must occur before a $e or $d statement in which its
variable occurs.

The first property determines the set of variables occurring in a frame.
These are the mandatory variables of the frame. The second property
tells us there must be only one type specified for a variable. The third prop-
erty determines which $d statements belong to the frame. The last property
is not a theoretical requirement but it makes parsing of the database easier.

For our examples, we assume our database has the following declarations:

$v P Q R $.

$c -> () |- wff $.

The following sequence of statements, describing the modus ponens in-
ference rule, is an example of a frame:

wp $f wff P $.

wq $f wff Q $.

maj $e |- (P -> Q) $.

min $e |- P $.

mp $a |- Q $.

The following sequence of statements is not a frame because R does not
occur in the $e’s or the $a:

wp $f wff P $.

wq $f wff Q $.

wr $f wff R $.

maj $e |- (P -> Q) $.

min $e |- P $.

mp $a |- Q $.

The following sequence of statements is not a frame because Q does not
occur in a $f:

110 CHAPTER 4. THE METAMATH LANGUAGE

wp $f wff P $.

maj $e |- (P -> Q) $.

min $e |- P $.

mp $a |- Q $.

The following sequence of statements is not a frame because the $a state-
ment is not the last one:

wp $f wff P $.

wq $f wff Q $.

maj $e |- (P -> Q) $.

mp $a |- Q $.

min $e |- P $.

Associated with a frame is a sequence of mandatory hypotheses. This
is simply the set of all $f and $e statements in the frame, in the order they
appear. A frame can be referenced in a later proof using the label of the
$a or $p assertion statement, and the proof makes an assignment to each
mandatory hypothesis in the order in which it appears. This means the order
of the hypotheses, once chosen, must not be changed so as not to affect later
proofs referencing the frame’s assertion statement. (The Metamath proof
verifier will, of course, flag an error if a proof becomes incorrect by doing
this.) Since proofs make use of “Reverse Polish notation,” described in
Section 4.3, we call this order the RPN order of the hypotheses.

Note that $d statements are not part of the set of mandatory hypotheses,
and their order doesn’t matter (as long as they satisfy the fourth property
for a frame described above). The $d statements specify restrictions on
variables that must be satisfied (and are checked by the proof verifier) when
expressions are substituted for them in a proof, and the $d statements them-
selves are never referenced directly in a proof.

A frame with a $p (provable) statement requires a proof as part of the
$p statement. Sometimes in a proof we want to make use of temporary or
dummy variables that do not occur in the $p statement or its mandatory
hypotheses. To accommodate this we define an extended frame as a frame
together with zero or more $d and $f statements that reference variables not
among the mandatory variables of the frame. Any new variables referenced
are called the optional variables of the extended frame. If a $f statement
references an optional variable it is called an optional hypothesis, and if
one or both of the variables in a $d statement are optional variables it is
called an optional disjoint-variable restriction. Properties 2, 3, and 4
for a frame also apply to an extended frame.

The concept of optional variables is not meaningful for frames with $a

statements, since those statements have no proofs that might make use of
them. There is no restriction on including optional hypotheses in the ex-
tended frame for a $a statement, but they serve no purpose.

4.2. THE BASIC KEYWORDS 111

The following set of statements is an example of an extended frame,
which contains an optional variable R and an optional hypothesis wr. In this
example, we suppose the rule of modus ponens is not an axiom but is derived
as a theorem from earlier statements (we omit its presumed proof). Variable
R may be used in its proof if desired (although this would probably have no
advantage in propositional calculus). Note that the sequence of mandatory
hypotheses in RPN order is still wp, wq, maj, min (i.e. wr is omitted), and this
sequence is still assumed whenever assertion mp is referenced in a subsequent
proof.

wp $f wff P $.

wq $f wff Q $.

wr $f wff R $.

maj $e |- (P -> Q) $.

min $e |- P $.

mp $p |- Q $= ... $.

Every frame is an extended frame, but not every extended frame is a
frame, as this example shows. The underlying frame for an extended frame
is obtained by simply removing all statements containing optional variables.
Any proof referencing an assertion will ignore any extensions to its frame,
which means we may add or delete optional hypotheses at will without
affecting subsequent proofs.

The conceptually simplest way of organizing a Metamath database is as
a sequence of extended frames. The scoping statements ${ and $} can be
used to delimit the start and end of a frame, leading to the following possible
structure for a database.

($v and $c statements)
${

extended frame
$}

${

extended frame
$}

...

In practice, this structure is inconvenient because we have to repeat any
$f, $e, and $d statements over and over again rather than stating them once
for use by several assertions. The scoping statements, which we will discuss
next, allow this to be done. In principle, any Metamath database can be
converted to the above format, and the above format is the most convenient
to use when studying a Metamath database as a formal system(Appendix
C). In fact, Metamath internally converts the database to the above format.
The command show statement in the Metamath program will show you

112 CHAPTER 4. THE METAMATH LANGUAGE

the contents of the frame for any $a or $p statement, as well as its extension
in the case of a $p statement.

During our discussion of scoping statements, it may be helpful to think in
terms of the equivalent sequence of frames that will result when the database
is parsed. Scoping (other than the limited use above to delimit frames) is
not a theoretical requirement for Metamath but makes it more convenient.

4.2.8 Scoping Statements (${ and $})
The scoping statements, ${ (start of block) and $} (end of block),
provide a means for controlling the portion of a database over which certain
statement types are recognized. The syntax of a scoping statement is very
simple; it just consists of the statement’s keyword:

${

$}

For example, consider the following database where we have stripped
out all tokens except the scoping statement keywords. For the purpose of
the discussion, we have added subscripts to the scoping statements; these
subscripts do not appear in the actual database.

${1 ${2 $}2 ${3 ${4 $}4 $}3 $}1

Each ${ statement in this example is said to be matched with the $} state-
ment that has the same subscript. Each pair of matched scoping statements
defines a region of the database called a block. Blocks can be nested inside
of other blocks; in the example, the block defined by ${4 and $}4 is nested
inside the block defined by ${3 and $}3 as well as inside the block defined
by ${1 and $}1. In general, a block may be empty, it may contain only non-
scoping statements,12 or it may contain any mixture of other blocks and
non-scoping statements. (This is called a “recursive” definition of a block.)

Associated with each block is a number called its nesting level that
indicates how deeply the block is nested. The nesting levels of the blocks in
our example are as follows:

${ ${ $}︸ ︷︷ ︸
2

${ ${ $}︸ ︷︷ ︸
3

$}

︸ ︷︷ ︸
2

$}

︸ ︷︷ ︸
1︸ ︷︷ ︸
0

The entire database is considered to be one big block (the outermost
block) with a nesting level of 0. The outermost block is not bracketed by
scoping statements.13

12Those statements other than ${ and $}.
13The language was designed this way so that several source files can be joined together

more easily.

4.2. THE BASIC KEYWORDS 113

All non-scoping Metamath statements become recognized or active at
the place where they appear.14 Certain of these statement types become
inactive at the end of the block in which they appear; these statement types
are:

$c, $v, $d, $e, and $f.

The other statement types remain active forever (i.e. through the end of the
database); they are:

$a and $p.

Any statement (of these 7 types) located in the outermost block will remain
active through the end of the database and thus are effectively “global”
statements.

All $c statements must be placed in the outermost block. Since they are
therefore always global, they could be considered as belonging to both of
the above categories.

The scope of a statement is the set of statements that recognize it as
active.

The concept of “active” is also defined for math symbols. Math symbols
(constants and variables) become active in the $c and $v statements that
declare them. A variable becomes inactive when its declaration statement
becomes inactive. Because all $c statements must be in the outermost block,
a constant will never become inactive after it is declared.

Redeclaration of Math Symbols

A variable may not be declared a second time while it is active, but it may
be declared again after it becomes inactive. This provides a convenient
way to introduce “local” variables, i.e. temporary variables for use in the
frame of an assertion or in a proof without keeping them around forever. A
previously declared variable may not be redeclared as a constant.

A constant may not be redeclared. And, as mentioned above, constants
must be declared in the outermost block.

The reason variables may have limited scope but not constants is that an
assertion ($a or $p statement) remains available for use in proofs through the
end of the database. Variables in an assertion’s frame may be substituted
with whatever is needed in a proof step that references the assertion, whereas
constants remain fixed and may not be substituted with anything. The
particular token used for a variable in an assertion’s frame is irrelevant
when the assertion is referenced in a proof, and it doesn’t matter if that
token is not available outside of the referenced assertion’s frame. Constants,
however, must be globally fixed.

14To keep things slightly simpler, we do not bother to define the concept of “active”
for the scoping statements.

114 CHAPTER 4. THE METAMATH LANGUAGE

In the present version of the Metamath language, there is no theoretical
benefit for the feature allowing variables to be active for limited scopes
rather than global. It is just a convenience that allows them, for example,
to be locally grouped together with their corresponding $f variable-type
declarations.15

Frames Revisited

Now that we have covered scoping, we will look at how an arbitrary Meta-
math database can be converted to the simple sequence of extended frames
described on p. 111. This is also how Metamath stores the database in-
ternally when it reads in the database source. The method is simple.
First, we collect all constant and variable ($c and $v) declarations in the
database, ignoring duplicate declarations of the same variable in different
scopes. We then put our collected $c and $v declarations at the beginning
of the database, so that their scope is the entire database. Next, for each
assertion in the database, we determine its frame and extended frame. The
extended frame is simply the $f, $e, and $d statements that are active. The
frame is the extended frame with all optional hypotheses removed.

An equivalent way of saying this is that the extended frame of an asser-
tion is the collection of all $f, $e, and $d statements whose scope includes
the assertion, in the order they appear.

4.3 The Anatomy of a Proof

Each provable assertion ($p statement) in a database must include a proof.
The proof is located between the $= and $. keywords in the $p statement.

In the basic Metamath language, a proof is a sequence of statement la-
bels. This label sequence serves as a set of instructions that the Metamath
program uses to construct a series of math symbol sequences. The construc-
tion must ultimately result in the math symbol sequence contained between
the $p and $= keywords of the $p statement. Otherwise, the Metamath
program will consider the proof incorrect, and it will notify you with an
appropriate error message when you ask it to verify the proof.16 Each label
in a proof is said to reference its corresponding statement.

Associated with any assertion ($p or $a statement) is a set of hypotheses
($f or $e statements) that are active with respect to that assertion. Some are

15A future version of the Metamath language may extend the language to include true
local variables as well as local constants. I have not decided upon the best way to do this
or even if it should be done at all; the main issue is whether the benefits offset greater
confusion in learning the language. In any case, the rules for the present language were
chosen to let existing databases be compatible with any future language extensions.

16To make the loading faster, the Metamath program does not automatically verify
proofs when you read in a database unless you use the /verify qualifier. After a database
has been read in, you may use the verify proof * command to verify proofs.

4.3. THE ANATOMY OF A PROOF 115

mandatory and the others are optional. You should review these concepts
if necessary.

Each label in a proof must be either the label of a previous assertion ($a
or $p statement) or the label of an active hypothesis ($e or $f statement)
of the $p statement containing the proof. Hypothesis labels may reference
both the mandatory and the optional hypotheses of the $p statement.

The label sequence in a proof specifies a construction in reverse Pol-
ish notation (RPN). You may be familiar with RPN if you have used
Hewlett-Packard or similar hand-held calculators. In the calculator analogy,
a hypothesis label is like a number and an assertion label is like an operation.
On an RPN calculator, an operation takes one or more previous numbers
in an input sequence, performs a calculation on them, and replaces those
numbers and itself with the result of the calculation. For example, the input
sequence 2, 2,+ on an RPN calculator results in 4, and the input sequence
1, 2, 2,+,+ results in 1, 4,+ which results in 5.

Understanding how RPN is processed involves the concept of a stack,
which can be thought of as a set of temporary memory locations that hold in-
termediate results. When Metamath encounters a hypothesis label it places
or pushes the math symbol sequence of the hypothesis onto the stack. When
Metamath encounters an assertion label, it associates the most recent stack
entries with the mandatory hypotheses of the assertion, in the order where
the most recent stack entry is associated with the last mandatory hypothesis
of the assertion. It then determines what substitutions have to be made into
the variables of the assertion’s mandatory hypotheses to make them identi-
cal to the associated stack entries. It then makes those same substitutions
into the assertion itself. Finally, Metamath removes or pops the matched
hypotheses from the stack and pushes the substituted assertion onto the
stack.

For the purpose of matching the mandatory hypothesis to the most recent
stack entries, whether a hypothesis is a $e or $f statement is irrelevant.
The only important thing is that a set of substitutions17 exist that allow a
match (and if they don’t, the proof verifier will let you know with an error
message). The Metamath language is specified in such a way that if a set
of substitutions exists, it will be unique. Specifically, the requirement that
each variable have a type specified for it with a $f statement ensures the
uniqueness.

We will illustrate this with an example. Consider the following Metamath
source file:

$c () -> wff $.

$v p q r s $.

wp $f wff p $.

wq $f wff q $.

17In the Metamath spec (Section 4.1), we use the singular term “substitution” to refer
to the set of substitutions we talk about here.

116 CHAPTER 4. THE METAMATH LANGUAGE

wr $f wff r $.

ws $f wff s $.

w2 $a wff (p -> q) $.

wnew $p wff (s -> (r -> p)) $= ws wr wp w2 w2 $.

This Metamath source example shows the definition and “proof” (i.e., con-
struction) of a well-formed formula (wff) in propositional calculus. (You
may wish to type this example into a file to experiment with the Metamath
program.) The first two statements declare (introduce the names of) four
constants and four variables. The next four statements specify the variable
types, namely that each variable is assumed to be a wff. Statement w2 de-
fines (postulates) a way to produce a new wff, (p -> q), from two given
wffs p and q. The mandatory hypotheses of w2 are wp and wq. Statement
wnew claims that (s -> (r -> p)) is a wff given three wffs s, r, and
p. More precisely, wnew claims that the sequence of ten symbols wff (s

-> (r -> p)) is provable from previous assertions and the hypotheses
of wnew. Metamath does not know or care what a wff is, and as far as
it is concerned wff is just an arbitrary constant symbol in a math symbol
sequence. The mandatory hypotheses of wnew are wp, wr, and ws; wq is
an optional hypothesis. In our particular proof, the optional hypothesis is
not referenced, but in general, any combination of active (i.e. optional and
mandatory) hypotheses could be referenced. The proof of statement wnew

is the sequence of five labels starting with ws (step 1) and ending with w2

(step 5).
When Metamath verifies the proof, it scans the proof from left to right.

We will examine what happens at each step of the proof. The stack starts
off empty. At step 1, Metamath looks up label ws and determines that it
is a hypothesis, so it pushes the symbol sequence of statement ws onto the
stack:

Stack location Contents

1 wff s

Metamath sees that the labels wr and wp in steps 2 and 3 are also hy-
potheses, so it pushes them onto the stack. After step 3, the stack looks like
this:

Stack location Contents

3 wff p

2 wff r

1 wff s

At step 4, Metamath sees that label w2 is an assertion, so it must do some
processing. First, it associates the mandatory hypotheses of w2, which are
wp and wq, with stack locations 2 and 3, in that order. Metamath determines
that the only possible way to make hypothesis wp match (become identical

4.3. THE ANATOMY OF A PROOF 117

to) stack location 2 and wq match stack location 3 is to substitute variable
p with r and q with p. Metamath makes these substitutions into w2 and
obtains the symbol sequence wff (r -> p). It removes the hypotheses
from stack locations 2 and 3, then places the result into stack location 2:

Stack location Contents

2 wff (r -> p)

1 wff s

At step 5, Metamath sees that label w2 is an assertion, so it must again do
some processing. First, it matches the mandatory hypotheses of w2, which
are wp and wq, to stack locations 1 and 2. Metamath determines that the
only possible way to make the hypotheses match is to substitute variable p

with s and q with (r -> p). Metamath makes these substitutions into
w2 and obtains the symbol sequence wff (s -> (r -> p)). It removes
stack locations 1 and 2, then places the result into stack location 1:

Stack location Contents

1 wff (s -> (r -> p))

After Metamath finishes processing the proof, it checks to see that the
contents of stack location 1 is the same as the math symbol sequence in the
$p statement. This is the case for our proof of wnew, so we have proved
wnew successfully. If the result differs, Metamath will notify you with an
error message. An error message will also result if the stack contains more
than one entry at the end of the proof, or if the stack did not contain enough
entries at any point in the proof to match all of the mandatory hypotheses
of an assertion. Finally, Metamath will notify you with an error message if
no substitution is possible that will make a referenced assertion’s hypothesis
match the stack entries. You may want to experiment with the different
kinds of errors that Metamath will detect by making some small changes in
the proof of our example.

Metamath’s proof notation was designed primarily to express proofs in
a relatively compact manner, not for readability by humans. Metamath can
display proofs in a number of different ways with the show proof command.
The /lemmon qualifier displays it in a format that is easier to read when the
proofs are short, and you saw examples of its use in Chapter 2. For longer
proofs, it is useful to see the tree structure of the proof. A tree structure
is displayed when the /lemmon qualifier is omitted. You will probably find
this display more convenient as you get used to it. The tree display of the
proof in our example looks like this:

1 wp=ws $f wff s

2 wp=wr $f wff r

3 wq=wp $f wff p

4 wq=w2 $a wff (r -> p)

5 wnew=w2 $a wff (s -> (r -> p))

118 CHAPTER 4. THE METAMATH LANGUAGE

The number to the left of each line is the step number. Following it is
a hypothesis association, consisting of two labels separated by =. To
the left of the = (except in the last step) is the label of a hypothesis of an
assertion referenced later in the proof; here, steps 1 and 4 are the hypothesis
associations for the assertion w2 that is referenced in step 5. A hypothesis
association is indented one level more than the assertion that uses it, so it is
easy to find the corresponding assertion by moving directly down until the
indentation level decreases to one less than where you started from. To the
right of each = is the proof step label for that proof step. The statement
keyword of the proof step label is listed next, followed by the content of the
top of the stack (the most recent stack entry) as it exists after that proof
step is processed. With a little practice, you should have no trouble reading
proofs displayed in this format.

Our simple example shows the syntax construction of a formula that
might be used as part of the construction of a “real” proof step that de-
duces theorems from other theorems. In standard mathematics, this kind
of construction is not considered a proper part of the proof at all, and it
certainly becomes rather boring after a while. To filter out syntax con-
structions in the proof display, the show proof command has the qualifier
/essential which you will probably use quite often in order to see just the
“real” steps of the proof.

When verifying a proof, Metamath will check that no mandatory $d

statement of an assertion referenced in a proof is violated when substitutions
are made to the variables in the assertion. For details see Section 4.1.4 or
4.2.4.

4.3.1 The Concept of Unification

During the course of verifying a proof, when Metamath encounters an asser-
tion label, it associates the mandatory hypotheses of the assertion with the
top entries of the RPN stack. Metamath then determines what substitu-
tions it must make to the variables in the assertion’s mandatory hypotheses
in order for these hypotheses to become identical to their corresponding
stack entries. This process is called unification. (We also informally use
the term “unification” to refer to a set of substitutions that results from the
process, as in “two unifications are possible.”) After the substitutions are
made, the hypotheses are said the be unified.

If no such substitutions are possible, Metamath will consider the proof
incorrect and notify you with an error message.

The general algorithm for unification described in the literature is some-
what complex. However, in the case of Metamath it is trivial because of
the requirement that each variable have its type specified with a $f hypoth-
esis and that each $f hypothesis have the restricted syntax of a constant
followed by a variable. The constant in the $f hypothesis must match the
first symbol of the corresponding RPN stack entry (which will be also be a

4.4. EXTENSIONS TO THE METAMATH LANGUAGE 119

constant), so only possible match for the variable in the $f hypothesis is the
sequence of symbols in the stack entry after the initial constant.

In the Proof Assistant, a more general unification algorithm is used.
While a proof is being developed, sometimes not enough information is avail-
able to determine a unique unification. In this case Metamath will ask you
to pick the correct one.

4.4 Extensions to the Metamath Language

4.4.1 Comments in the Metamath Language

The commenting feature allows you to annotate the contents of a database.
Just as with most computer languages, comments are ignored for the purpose
of interpreting the contents of the database. Comments effectively act as
additional white space between tokens when a database is parsed.

A comment may be placed between any two tokens in a source file.
Comments have the following syntax:

$(text $)

Here, text is a string, possibly empty, of any characters in Metamath’s char-
acter set (p. 92), except that the character strings $(and $) may not appear
in text. Thus nested comments are not permitted:18 Metamath will com-
plain if you give it

$(This is a $(nested $) comment. $)

(To compensate for this behavior, I often change all $’s to @’s in sections of
Metamath code I wish to comment out.)

Math Symbols and Labels Inside Comments

Inside of comments, a string of tokens enclosed in grave accents (‘) will be
converted to standard mathematical symbols during LATEX output typeset-
ting, according to the information in the special $t comment in the database,
as described in Appendix A. The first ‘ causes the output processor to enter
math mode and the second one exits it. Two consecutive grave accents ‘‘
are treated as a single actual grave accent (both inside and outside of math
mode) and will not cause the output processor to enter or exit math mode.

Outside of math mode, any token preceded by a tilde (~) will be format-
ted in typewriter font, and the tilde removed, to make them stand it from
the rest of the text. This formatting will be applied from all characters after
the tilde up to the first white space. This formatting mode is called label

18Computer languages have differing standards for nested comments, and rather than
picking one it was felt simplest not to allow them at all, at least in the current version of
Metamath (0.07.30).

120 CHAPTER 4. THE METAMATH LANGUAGE

mode. If a literal tilde is desired (outside of math mode), use two tildes in
a row to represent it.

These markup features have to do only with how the comments are type-
set, and have no effect on how Metamath verifies the database. The improper
use of them may result in incorrectly typeset output, but no Metamath error
messages will result during the read and verify proof commands. (How-
ever, the new write theorem_list command, added in version 0.07.30 of
the Metamath program, will check for markup errors as a side-effect of its
html generation.)

Section 5.7 has instructions for creating LATEX output.

Math Symbols In Comments

The grave accent ‘ tells Metamath to switch a comment to math mode.
In this mode, the characters following the ‘ are interpreted as a sequence
of math symbol tokens separated by white space. The tokens are looked
up in the $t comment and if found, they will be replaced by the standard
mathematical symbols that they correspond to before being placed in the
typeset output file. If not found, the symbol will be output as is and a
warning will be issued. The tokens do not have to be active in the database,
although a warning will be issued if they are not declared with $c or $v

statements.
The comment will stay in math mode until a second ‘ is found or the

end of the comment is reached. Here is an example of its use:

$(Pierce’s axiom, ‘ ((ph -> ps) -> ph) -> ph ‘ ,

is not very intuitive. $)

becomes

$(Pierce’s axiom, ((ϕ→ ψ)→ ϕ)→ ϕ, is not very intuitive. $)

Note that the math symbol tokens must be surrounded by white space.
White space should also surround the ‘ delimiters.

The math mode feature also gives you a quick and easy way to generate
text containing mathematical symbols, independently of the intended pur-
pose of Metamath. To do this, simply create your text with grave accents
surrounding your formulas, after making sure that your math symbols are
mapped to LATEX symbols as described in Appendix A. It is easier if you
start with a database with predefined symbols such as set.mm. Use your
grave-quoted math string to replace an existing comment, then typeset the
statement corresponding to that comment following the instructions from
the help tex command in the Metamath program. You will then probably
want to edit the resulting file with a text editor to fine tune it to your exact
needs.

4.4. EXTENSIONS TO THE METAMATH LANGUAGE 121

Label References in Comments

Outside of math mode, a tilde ~ indicates to Metamath’s output processor
that the token that follows (i.e. the characters up to the next white space)
represents a statement label. Whether or not the token is an actual state-
ment label is not checked, and the token does not have to have the correct
syntax for a label; no error messages will be produced. The only effect of
the label mode on the output is that typewriter font will be used for the
tokens that are placed in the LATEX output file.

(On the other hand, the tokens after the tilde must be actual labels for
correct output of html, described in the next section, and error messages
will be issued during that output if they aren’t.)

4.4.2 Comment Markup Notation for HTML

The automated generation of html web pages (Section 5.8) is new in version
0.07.30 of the Metamath program. The comment markup notation for LATEX
also applies to html, and some additional features specifically for html were
added. These markup features (including those reused from LATEX) are the
following.

‘ math-symbol math-symbol ... ‘ (math symbols enclosed in grave ac-
cents i.e. backticks) - Use graphical math-symbols in the html output.
Inside of a math-symbol, ‘‘ means literal ‘.

~ label (tilde followed by a label) - Use a hyperlink in the html output
that links to the web page for statement label. Exception: if label
begins with http://, it is assumed to be a url (which is used as-is,
except that a ~ in the url should be specified with ~~). Only $a

and $p statement labels may be used, since web pages for $e and $f

statements are not generated.

[author] - Link to a bibliographical reference. See help html and
help write bibliography in the Metamath program for more infor-
mation. See also Sections 5.8.1 and 5.8.3.

$t - Flag the comment as the special one containing LATEX and/or
html typesetting definitions. See Section 5.8.1 and Appendix A.

_ (underscore) - Italicize text starting from space_non-space (i.e. _

with a space before it and a non-space character after it) until the
next non-space_space. Normal punctuation (e.g. a trailing comma or
period) is ignored when determining space.

_ (underscore) - non-space_non-space-string, where non-space-string
is a string of non-space characters, will make non-space-string become
a subscript.

122 CHAPTER 4. THE METAMATH LANGUAGE

It is recommended that spaces surround any ~ and ‘ tokens in the com-
ment and that a space follow the label after a ~ token. This will make
global substitutions to change labels and symbol names much easier and
also eliminate any future chance of ambiguity. Spaces around these tokens
are automatically removed in the final output to conform with normal rules
of punctuation; for example, a space between a trailing ‘ and a left paren-
thesis will be removed.

The [author] notation will also create an entry in the bibliography cross-
reference file generated by write bibliography (Section 5.8.3). For this to
work properly, the surrounding comment must be formatted as follows:

keyword label noise-word [author] p. number

for example

Theorem 5.2 of [Monk] p. 223

The keyword is not case sensitive and must be one of the following:

theorem lemma definition compare proposition corollary

axiom rule remark exercise problem notation example

property figure postulate equation scheme chapter

The optional label may consist of more than one (non-keyword and non-
noise-word) word. The optional noise-word is one of:

of in from on

and is ignored when the cross-reference file is created. The write biblio-

graphy command will perform error checking to verify the above format.
A good way to become familiar with the markup notation is to look at

the extensive examples in the set.mm database.

4.4.3 Including Other Files in a Metamath Source File

The keywords $[and $] specify a file to be included at that point in a
Metamath source file. The syntax for including a file is as follows:

$[file-name $]

The file-name should be a single token with the same syntax as a math
symbol (i.e., all 93 printable characters other than $ are allowed, subject
to the file-naming limitations of your operating system). Comments may
appear between the $[and $] keywords. Included files may include other
files, which may in turn include other files, and so on.

For example, suppose you want to use the set theory database as the
starting point for your own theory. The first line in your file could be

$[set.mm $]

4.4. EXTENSIONS TO THE METAMATH LANGUAGE 123

All of the information (axioms, theorems, etc.) in set.mm and any files that
it includes will become available for you to reference in your file. This can
help make your work more modular. A drawback to including files is that if
you change the name of a symbol or the label of a statement, you must also
remember to update any references in any file that includes it.

The naming conventions for included files are the same as those of your
operating system.19 For compatibility among operating systems, you should
keep the file names as simple as possible. A good convention to use is file.mm
where file is eight characters or less, in lower case.

There is no limit to the nesting depth of included files. One thing that
you should be aware of is that if two included files themselves include a
common third file, only the first reference to this common file will be read
in. This allows you to include two or more files that build on a common
starting file without having to worry about label and symbol conflicts that
would occur if the common file were read in more than once. (In fact, if a
file includes itself, the self reference will be ignored, although of course it
would not make any sense to do that.) This feature also means, however,
that if you try to include a common file in several inner blocks, the result
might not be what you expect, since only the first reference will be replaced
with the included file (unlike the include statement in most other computer
languages). Thus you would normally include common files only in the
outermost block.

4.4.4 Compressed Proof Format

The proof notation presented in Section 4.3 is called a normal proof and
in principle is sufficient to express any proof. However, proofs often con-
tain steps and subproofs that are identical. This is particularly true in
typical Metamath applications, because Metamath requires that the math
symbol sequence (usually containing a formula) at each step be separately
constructed, that is, built up piece by piece. As a result, a lot of repetition
often results. The compressed proof format allows Metamath to take
advantage of this redundancy to shorten proofs.

The specification for the compressed proof format is given in Appendix B.
Normally you need not concern yourself with the details of the com-

pressed proof format, since the Metamath program will allow you to convert
from the normal format to the compressed format with ease, and will also au-
tomatically convert from the compressed format when proofs are displayed.
The overall structure of the compressed format is as follows:

19On the Macintosh, prior to Mac OS X, a colon is used to separate disk and folder
names from your file name. For example, volume:file-name refers to the root di-
rectory, volume:folder-name:file-name refers to a folder in root, and volume:folder-
name:. . . :file-name refers to a deeper folder. A simple file-name refers to a file in the
folder from which you launch the Metamath application. Under Mac OS X and later,
the Metamath program is run under the Terminal application, which conforms to Unix
naming conventions.

124 CHAPTER 4. THE METAMATH LANGUAGE

$= (label-list) compressed-proof $.

The first (serves as a flag to Metamath that a compressed proof follows.
The label-list includes all statements referred to by the proof except the
mandatory hypotheses. The compressed-proof is a compact encoding of the
proof, using upper case letters, and can be thought of as a large integer in
base 26. White space inside of compressed-proof is optional and is ignored.

It is important to note that the order of the mandatory hypotheses of
the statement being proved must not be changed if the compressed proof
format is used, otherwise the proof will become incorrect. The reason for
this is that the mandatory hypotheses are not mentioned explicitly in the
compressed proof in order to make the compression more efficient. If you
wish to change the order of mandatory hypotheses, you must first convert
the proof back to normal format using the save proof statement /normal

command. Later, you can go back to compressed format with save proof

statement /compressed.
During error checking with the verify proof command, an error found

in the a compressed proof may point to a character in compressed-proof,
which may not be very meaningful to you. In this case, try to save proof

/normal first, then do the verify proof again. In general, it is best to
make sure a proof is correct before saving it in compressed format, because
severe errors are less likely to be recoverable than in normal format.

4.4.5 Specifying Unknown Proofs or Subproofs

In a proof under development, any step or subproof that is not yet known
may be represented with a single ?. For the purposes of parsing the proof, the
? will push a single entry onto the RPN stack just as if it were a hypothesis.
While developing a proof with the Proof Assistant, a partially developed
proof may be saved with the save new_proof command, and ?’s will be
placed at the appropriate places.

All $p statements must have proofs, even if they are entirely unknown.
Before creating a proof with the Proof Assistant, you should specify a com-
pletely unknown proof as follows:

label $p statement $= ? $.

The verify proof command will check the known portions of a partial
proof for errors, but will warn you that the statement has not been proved.

Note that partially developed proofs may be saved in compressed format
if desired. In this case, you will see one or more ?’s in the compressed-proof
part.

4.5. APPENDIX: AXIOMS VS. DEFINITIONS 125

4.5 Appendix: Axioms vs. Definitions

Metamath makes no distinction between axioms and definitions. The $a

statement is used for both. At first, this may seem puzzling. In the minds
of many mathematicians, the distinction is clear, even obvious, and hardly
worth discussing. A definition is considered to be merely an abbreviation
that can be replaced by the expression for which it stands; although unless
one actually does this, to be precise that one should say that a theorem
is a consequence of the axioms and the definitions that are used in the
formulation of the theorem [4, p. 20].

What is a definition? In its simplest form, a definition introduces a
new symbol and provides an unambiguous rule to transform an expression
containing the new symbol to one without it. The concept of a “proper
definition” (as opposed to a creative definition) that is usually agreed upon
is (1) the definition should not strengthen the language and (2) any symbols
introduced by the definition should be eliminable from the language [42]. In
other words, they are mere typographical conveniences that do not belong
to the system and are theoretically superfluous. This may seem obvious, but
in fact the nature of definitions can be subtle, sometimes requiring difficult
metatheorems to establish that they are not creative.

A more conservative stance was taken by logician S. Leśniewski.

Leśniewski regards definitions as theses of the system. In this
respect they do not differ either from the axioms or from theo-
rems, i.e. from the theses added to the system on the basis of the
rule of substitution or the rule of detachment [modus ponens].
Once definitions have been accepted as theses of the system, it
becomes necessary to consider them as true propositions in the
same sense in which axioms are true [32].

Let us look at some simple examples of definitions in propositional cal-
culus. Consider the definition of logical or (disjunction): “P ∨ Q denotes
¬P → Q (not P implies Q).” It is very easy to recognize a statement mak-
ing use of this definition, because it introduces the new symbol ∨ that did
not previously exist in the language. It is easy to see that no new theorems
of the original language will result from this definition.

Next, consider a definition that eliminates parentheses: “P → Q → R
denotes P → (Q → R).” This is more subtle, because no new symbols are
introduced. The reason this definition is considered proper is that no new
symbol sequences that are valid wffs (well-formed formulas) in the original
language will result from the definition, since “P → Q→ R” is not a wff in
the original language. Here, we implicitly make use of the fact that there is
a decision procedure that allows us to determine whether or not a symbol
sequence is a wff, and this fact allows us to use symbol sequences that are
not wffs to represent other things (such as wffs) by means of the definition.
However, to justify the definition as not being creative we need to prove that

126 CHAPTER 4. THE METAMATH LANGUAGE

“P → Q→ R” is in fact not a wff in the original language, and this is more
difficult than in the case where we simply introduce a new symbol.

What constitutes a definition versus an axiom is sometimes arbitrary in
mathematical literature. For example, the connectives ∨ (or), ∧ (and),
and ↔ (equivalent to) in propositional calculus are usually considered de-
fined symbols that can be used as abbreviations for expressions containing
the “primitive” connectives → and ¬. This is the way we treat them in the
standard logic and set theory database set.mm. However, the first three con-
nectives can also be considered “primitive,” and axiom systems have been
devised that treat all of them as such. For example, [17, p. 35] presents one
with 15 axioms, some of which in fact coincide with what we have chosen to
call definitions in set.mm. In certain subsets of classical propositional calcu-
lus, such as the intuitionist fragment, it can be shown that one cannot make
do with just → and ¬ but must treat additional connectives as primitive in
order for the system to make sense.20

In set theory, recursive definitions define a newly introduced symbol in
terms of itself. The justification of recursive definitions, using several “recur-
sion theorems,” is the usually one of the first sophisticated proofs a student
encounters when learning set theory, and there is a significant amount of
implicit metalogic behind a recursive definition even though the definition
itself is typically simple to state. It is, however, possible to substitute one
kind of complexity for another. We can eliminate the need for metalog-
ical justification by defining the operation directly with an explicit (but
complicated) expression, then deriving the recursive definition directly as a
theorem, using a recursion theorem “in reverse.” We do this in set.mm, as
follows.

In set.mm our goal was to introduce almost all definitions in the form of
two expressions connected by either ↔ or =, where the thing being defined
does not appear on the right hand side. Quine calls this form “a genuine
or direct definition” [48, p. 174], which makes the definitions very easy to
eliminate and the metalogic needed to justify them as simple as possible.
We achieved this goal in almost all cases. Sometimes this makes the defini-
tions more complex and less intuitive. For example, the traditional way to
define addition of natural numbers is to define an operation called successor
(which means “plus one” and is denoted by “suc”), then define addition
recursively with the two definitions n+ 0 = n and m+ sucn = suc(m+ n).
Although this definition seems simple and obvious, the method to eliminate
the definition is not obvious: in the second part of the definition, addition
is defined in terms of itself. By eliminating the definition, we don’t mean
repeatedly applying it to specific m and n but rather showing the explicit,
closed-form set-theoretical expression that m+ n represents, that will work
for any m and n and that does not have a + sign on its right-hand side. For

20Two nice systems that make the transition from intuitionistic and other weak frag-
ments to classical logic just by adding axioms are given in [50].

4.5. APPENDIX: AXIOMS VS. DEFINITIONS 127

a recursive definition like this not to be circular (creative), there are some
hidden, underlying assumptions we must make, for example that the natu-
ral numbers have a certain kind of order. In set.mm we chose to start with
the direct (though complex and nonintuitive) definition then derive from
it the standard recursive definition.21 The end result is the same, but we
completely eliminate the rather complex metalogic that justifies the recur-
sive definition. (For a mathematician, recursive definitions are more efficient
and intuitive than direct ones once the metalogic has been learned or pos-
sibly just accepted as correct. However, it was felt that direct definition
in set.mm maximizes rigor by minimizing metalogic. It can be eliminated
effortlessly, something difficult to do with a recursive definition.)

21The closed-form definition used in set.mm for the addition operation on ordinals (of
which natural numbers are a subset) is

df-oadd $a `+o = { 〈 〈x , y 〉 , z 〉 | ((x∈On∧ y ∈On)∧ z= (rec ({ 〈w , v 〉 | v= sucw }
, x) ‘ y)) }

Here, the abstraction class of nested ordered pairs is defined by df-oprab in set.mm, and
rec is a “recursion operator” with the definition

df-rfg $a ` rec (F ,A) =
⋃
{ f | ∃x (x∈On∧ (f Fnx∧∀ y (y ∈x→ (f ‘ y) = ({ 〈 g , z

〉 | ((g=∅∧ z=A)∨ (¬ (g=∅∨Lim dom g)∧ z= (F ‘ (g ‘
⋃

dom g)))∨
(Lim dom g ∧ z=

⋃
ran g)) } ‘ (f � y))))) }

which can be further broken down with definitions shown in Section 3.4.3. You may
be surprised at the complexity of what seems like such a simple notion. From these
definitions the simpler, more intuitive recursive definition is derived as a set of theorems.

128 CHAPTER 4. THE METAMATH LANGUAGE

Chapter 5

The Metamath Program

This chapter provides a reference manual for the Metamath program.
Current instructions for obtaining and installing the Metamath program

can be found at the http://metamath.org web site. For Windows, there is
a pre-compiled version called metamath.exe. For Unix, Linux, and Mac OS
X (which we will refer to collectively as “Unix”), the Metamath program
can be compiled from its source code with the command

gcc *.c -o metamath

using the gcc c compiler available on those systems.
In the command syntax descriptions below, fields enclosed in square

brackets [] are optional. File names may be optionally enclosed in single
or double quotes. This is useful if the file name contains slashes (/), such
as in Unix path names, that might be confused with Metamath command
qualifiers.

5.1 Invoking Metamath

Unix, Linux, and Mac OS X have a command-line interface called the
bash shell. (In Mac OS X, select the Terminal application from Applica-
tions/Utilities.) To invoke Metamath from the bash shell prompt, assuming
that the Metamath program is in the current directory, type

bash$./metamath

To invoke Metamath from a Windows DOS or Command Prompt, as-
suming that the Metamath program is in the current directory (or in a
directory included in the Path system environment variable), type

C:\metamath>metamath

129

http://metamath.org

130 CHAPTER 5. THE METAMATH PROGRAM

To use command-line arguments at invocation, the command-line argu-
ments should be a list of Metamath commands, surrounded by quotes if
they contain spaces. In Windows, the surrounding quotes must be double
(not single) quotes. For example, to read the database file set.mm, verify
all proofs, and exit the program, type (under Unix)

bash$./metamath ’read set.mm’ ’verify proof *’ exit

Note that in Unix, any directory path with /’s must be surrounded by quotes
so Metamath will not interpret the / as a command qualifier. So if set.mm
is in the /tmp directory, use for the above example

bash$./metamath ’read "/tmp/set.mm"’ ’verify proof *’ exit

For convenience, if the command-line has one argument and no spaces
in the argument, the command is implicitly assumed to be read. In this
one special case, /’s are not interpreted as command qualifiers, so you don’t
need quotes around a Unix file name. Thus

bash$./metamath /tmp/set.mm

and

bash$./metamath "read ’/tmp/set.mm’"

are equivalent.

5.2 Controlling Metamath

The Metamath program was first developed on a vax/vms system, and
some aspects of its command line behavior reflect this heritage. Hopefully
you will find it reasonably user-friendly once you get used to it.

Each command line is a sequence of English-like words separated by
spaces, as in show settings. Command words are not case sensitive, and
only as many letters are needed as are necessary to eliminate ambiguity;
for example, sh se would work for the command show settings. In some
cases arguments such as file names, statement labels, or symbol names are
required; these are case-sensitive (although file names may not be on some
operating systems).

A command line is entered by typing it in then pressing the return (enter)
key. To find out what commands are available, type ? at the MM> prompt.
To find out the choices at any point in a command, press return and you
will be prompted for them. The default choice (the one selected if you just
press return) is shown in brackets (<>).

You may also type ? in place of a command word to force Metamath
to tell you what the choices are. The ? method won’t work, though, if a

5.2. CONTROLLING METAMATH 131

non-keyword argument such as a file name is expected at that point, because
the program will think that ? is the value of the argument.

Some commands have one or more optional qualifiers which modify the
behavior of the command. Qualifiers are preceded by a slash (/), such as in
read set.mm / verify. Spaces are optional around the /. If you need to
use a slash in a command argument, as in a Unix file name, put single or
double quotes around the command argument.

The open log command will save everything you see on the screen and
is useful to help you recover should something go wrong in a proof, or if you
want to document a bug.

If a command responds with more than a screenful, you will be prompted
to <return> to continue, Q to quit, or S to scroll to end. Q or q
(not case-sensitive) will complete the command internally but will suppress
further output until the next MM> prompt. s will suppress further pausing
until the next MM> prompt. After the first screen, you are also presented
with the choice of b to go back a screenful. Note that b may also be entered
at the MM> prompt immediately after a command to scroll back through the
output of that command.

A command line enclosed in quotes is executed by your operating system.
See Section 5.2.12.

Warning: Pressing ctrl-c will abort the Metamath program uncondi-
tionally. This means any unsaved work will be lost.

5.2.1 exit Command

Syntax: exit [/force]
This command exits from Metamath. If there have been changes to the

source with the save proof or save new_proof commands, you will be
given an opportunity to write source to permanently save the changes.

In Proof Assistant mode, the exit command will return to the MM>

prompt. If there were changes to the proof, you will be given an oppor-
tunity to save new_proof.

The quit command is a synonym for exit.
Optional qualifier: /force - Do not prompt if changes were not saved.

This qualifier is useful in submit command files (Section 5.2.4) to ensure
predictable behavior.

5.2.2 open log Command

Syntax: open log file-name
This command will open a log file that will store everything you see on

the screen. It is useful to help recovery from a mistake in a long Proof
Assistant session, or to document bugs.

The log file can be closed with close log. It will automatically be closed
upon exiting Metamath.

132 CHAPTER 5. THE METAMATH PROGRAM

5.2.3 close log Command

Syntax: close log

The close log command closes a log file if one is open. See also open

log.

5.2.4 submit Command

Syntax: submit filename
This command causes further command lines to be taken from the spec-

ified file. Note that any line beginning with an exclamation point (!) is
treated as a comment (i.e. ignored). Also note that the scrolling of the
screen output is continuous, so you may want to open a log file (see open

log) to record the results that fly by on the screen. After the lines in the
file are exhausted, Metamath returns to its normal user interface mode.

Currently, the submit command is not recursive. In other words, submit
commands are not allowed inside of a command file.

5.2.5 erase Command

Syntax: erase
This command will reset Metamath to its starting state, deleting any

database that was read in. If there have been changes to the source with
the save proof or save new_proof commands, you will be given an oppor-
tunity to write source to permanently save the changes.

5.2.6 set echo Command

Syntax: set echo on or set echo off

The set echo on command will cause command lines to be echoed with
any abbreviations expanded. While learning the Metamath commands, this
feature will show you the exact command that your abbreviated input cor-
responds to.

5.2.7 set scroll Command

Syntax: set scroll prompted or set scroll continuous

The Metamath command line interface starts off in the prompted mode,
which means that you will prompted to continue or quit after each full screen
in a long listing. In continuous mode, long listings will be scrolled without
pausing.

5.2.8 set width Command

Syntax: set width number

5.2. CONTROLLING METAMATH 133

Metamath assumes the width of your screen is 79 characters (chosen
because the Command Prompt in Windows XP has a wrapping bug at
column 80). If your screen is wider or narrower, this command allows you to
change this default screen width. A larger width is advantageous for logging
proofs to an output file to be printed on a wide printer. A smaller width may
be necessary on some terminals; in this case, the wrapping of the information
messages may sometimes seem somewhat unnatural, however. In LATEX,
there is normally a maximum of 61 characters per line with typewriter font.
(The examples in this book were produced with 61 characters per line.)

5.2.9 set height Command

Syntax: set height number
Metamath assumes your screen height is 24 lines of characters. If your

screen is taller or shorter, this command lets you to change the number of
lines at which the display pauses and prompts you to continue.

5.2.10 beep Command

Syntax: beep
This command will produce a beep. By typing it ahead after a long-

running command has started, it will alert you that the command is finished.
For convenience, b is an abbreviation for beep.

Note: If b is typed at the MM> prompt immediately after the end of a
multiple-page display paged with “Press <return> for more...” prompts,
then the b will back up to the previous page rather than perform the beep

command. In that case you must type the unabbreviated beep form of the
command.

5.2.11 more Command

Syntax: more filename
This command will display the contents of an ascii file on your screen.

(This command is provided for convenience but is not very powerful. See
Section 5.2.12 to invoke your operating system’s command to do this, such
as the more command in Unix.)

5.2.12 Operating System Commands

A line enclosed in single or double quotes will be executed by your computer’s
operating system if it has a command line interface. For example, on a
vax/vms system, MM> ’dir’ will print disk directory contents. Note that
this feature will not work on the Macintosh prior to Mac OS X, which does
not have a command line interface.

For your convenience, the trailing quote is optional.

134 CHAPTER 5. THE METAMATH PROGRAM

5.2.13 Size Limitations in Metamath

In general, there are no fixed, predefined limits on how many labels, tokens,
statements, etc. that you may have in a database file. The Metamath pro-
gram uses 32-bit variables (64-bit on 64-bit CPUs) as indices for almost all
internal arrays, which are allocated dynamically as needed.

5.3 Reading and Writing Files

The following commands create new files: the open commands; the write

commands; the /html, /alt_html, /brief_html, /brief_alt_html quali-
fiers of show statement, and midi. The following commands append to files
previously opened: the /tex qualifier of show proof and show new_proof;
the /tex and /simple_tex qualifiers of show statement; the close com-
mands; and all screen dialog between open log and close log.

The commands that create new files will not overwrite an existing file-
name but will rename the existing one to filename~1. An existing filename~1
is renamed filename~2, etc. up to filename~9. An existing filename~9 is
deleted. This makes recovery from mistakes easier but also will clutter up
your directory, so occasionally you may want to clean up (delete) these ~n
files.

5.3.1 read Command

Syntax: read file-name [/verify]
This command will read in a Metamath language source file and any

included files. Normally it will be the first thing you do when entering
Metamath. Statement syntax is checked, but proof syntax is not checked.
Note that the file name may be enclosed in single or double quotes; this is
useful if the file name contains slashes, as might be the case under Unix.

If you are getting an “?Expected VERIFY” error when trying to read a
Unix file name with slashes, you probably haven’t quoted it.

If you are prompted for the file name (by pressing return after read) you
should not put quotes around it, even if it is a Unix file name with slashes.

Optional command qualifier:
/verify - Verify all proofs as the database is read in. This qualifier will

slow down reading in the file. See verify proof for more information on
file error-checking.

See also erase.

5.3.2 write source Command

Syntax: write source filename [/clean]
This command will write the contents of a Metamath database into a

file. Note: The present version of Metamath (0.07.30) will not split the

5.4. SHOWING STATUS AND STATEMENTS 135

database into its constituent source files included with $[and $] keywords.
A future version is planned to properly separate all constituent files.

Optional command qualifier (primarily intended to assist web site up-
dates):

/clean - Suppresses (deletes) the output of any theorem that has been
flagged with a question mark (?) placed in or in place of the date comment
field at the end of its proof, for example “$([?31-Oct-00] $).” This lets
you strip out proofs under development so that a “clean” version of the
database can be generated for official release. Note: Currently, hypotheses
are not stripped, only $p statements. Spurious date comment fields of the
suppressed theorems may also remain. Be careful to use a different name
for the /clean version so that your work in progress won’t be destroyed.

5.4 Showing Status and Statements

5.4.1 show settings Command

Syntax: show settings

This command shows the state of various parameters.

5.4.2 show memory Command

Syntax: show memory

This command shows the available memory left. It is not be meaningful
on most modern operating systems, which have virtual memory.

5.4.3 show labels Command

Syntax: show labels label-match [/all] [/linear]
This command shows the labels of $a and $p statements that match label-

match. A * in label-match matches zero or more characters. For example,
*abc*def will match all labels containing abc and ending with def.

Optional command qualifier:
/all - Include matches for $e and $f statement labels.
/linear - Display only one label per line. This can be useful for building

scripts in conjunction with the utilities under the tools command.

5.4.4 show statement Command

Syntax: show statement label [qualifiers (see below)]
This command provides information about a statement. Only statements

that have labels ($f, $e, $a, and $p) may be specified. If label contains
wildcard (*) characters, all matching statements will be displayed in the
order they occur in the database.

Optional qualifiers (only one qualifier at a time is allowed):

136 CHAPTER 5. THE METAMATH PROGRAM

/comment - This qualifier includes the comment that immediately pre-
cedes the statement.

/full - Show complete information about each statement, and show all
statements matching label (including $e and $f statements).

/tex - This qualifier will write the statement information to the LATEX
file previously opened with open tex. See Section 5.7.

/simple_tex - The same as /tex, except that LATEX macros are not used
for formatting equations, allowing easier manual edits of the output for slide
presentations, etc.

/html, /alt_html, /brief_html, /brief_alt_html - These qualifiers
invoke a special mode of show statement that creates a web page for the
statement. They may not be used with any other qualifier. See Section 5.8
or help html in the program.

5.4.5 search Command

Syntax: search label-match "symbol-match” [/ all] [/ comments]
This command searches all $a and $p statements matching label-match

for occurrences of symbol-match. A * in label-match matches any label char-
acter. A $* in symbol-match matches any sequence of symbols. The symbols
in symbol-match must be separated by white space. The quotes surround-
ing symbol-match may be single or double quotes. For example, search

b* "-> $* ch" will list all statements whose labels begin with b and con-
tain the symbols -> and ch surrounding any symbol sequence (including no
symbol sequence). The wildcards ? and $? are also available to match
individual characters in labels and symbols respectively; see help search

in the Metamath program for details on their usage.
Optional command qualifiers:
/ all - Also search $e and $f statements.
/ comments - Search the comment that immediately precedes each label-

matched statement for symbol-match. In this case symbol-match is an arbi-
trary, non-case-sensitive character string. Quotes around symbol-match are
optional if there is no ambiguity.

5.5 Displaying and Verifying Proofs

5.5.1 show proof Command

Syntax: show proof label [qualifiers (see below)]
This command displays the proof of the specified $p statement in various

formats. The label may contain wildcard ($*) characters to match multiple
statements. Without any qualifiers, only the logical steps will be shown (i.e.
syntax construction steps will be omitted), in an indented format.

5.5. DISPLAYING AND VERIFYING PROOFS 137

Most of the time, you will use show proof label to see just the proof
steps corresponding to logical inferences.

Optional command qualifiers:
/essential - The proof tree is trimmed of all $f hypotheses before being

displayed. (This is the default, and it is redundant to specify it.)
/all - the proof tree is not trimmed of all $f hypotheses before being

displayed. /essential and /all are mutually exclusive.
/from_step step - The display starts at the specified step. If this qualifier

is omitted, the display starts at the first step.
/to_step step - The display ends at the specified step. If this qualifier

is omitted, the display ends at the last step.
/tree_depth number - Only steps at less than the specified proof tree

depth are displayed. Sometimes useful for obtaining an overview of the
proof.

/reverse - The steps are displayed in reverse order.
/renumber - When used with /essential, the steps are renumbered to

correspond only to the essential steps.
/tex - The proof is converted to LATEX and stored in the file opened with

open tex. See Section 5.7 or help tex in the program.
/lemmon - The proof is displayed in a non-indented format known as

Lemmon style, with explicit previous step number references. If this qualifier
is omitted, steps are indented in a tree format.

/start_column number - Overrides the default column at which the
formula display starts in a Lemmon-style display. May be used only in
conjunction with /lemmon.

/normal - The proof is displayed in normal format suitable for inclusion
in a Metamath source file. May not be used with any other qualifier.

/compressed - The proof is displayed in compressed format suitable
for inclusion in a Metamath source file. May not be used with any other
qualifier.

/statement_summary - Summarizes all statements (like a brief show

statement) used by the proof. It may not be used with any other qual-
ifier except /essential.

/detailed_step step - Shows the details of what is happening at a
specific proof step. May not be used with any other qualifier. The step
is the step number shown when displaying a proof without the /renumber

qualifier.

5.5.2 show usage Command

Syntax: show usage label [/recursive]
This command lists the statements whose proofs make direct reference

to the statement specified.
Optional command qualifier:

138 CHAPTER 5. THE METAMATH PROGRAM

/recursive - Also include statements whose proof ultimately depend on
the statement specified.

5.5.3 show trace back Command

Syntax: show trace_back [/essential] [/axioms] [/tree] [/depth number]
This command lists all statements that the proof of the specified $p

statement depends on.
Optional command qualifiers:
/essential - Restrict the trace-back to $e hypotheses of proof trees.
/axioms - List only the axioms that the proof ultimately depends on.
/tree - Display the trace-back in an indented tree format.
/depth number - Restrict the /tree trace-back to the specified indenta-

tion depth.
/count_steps - Counts the number of steps the proof has all the way

back to axioms. If /essential is specified, expansions of variable-type
hypotheses (syntax constructions) are not counted.

5.5.4 verify proof Command

Syntax: verify proof label-match [/syntax_only]
This command verifies the proofs of the specified statements. label-match

may contain wild card characters (*) to verify more than one proof; for
example *abc*def will match all labels containing abc and ending with
def. verify proof * will verify all proofs in the database.

Optional command qualifier:
/syntax_only - This qualifier will perform a check of syntax and RPN

stack violations only. It will not verify that the proof is correct. This
qualifier is useful for quickly determining which proofs are incomplete (i.e.
are under development and have ?’s in them).

Note: read, followed by verify proof *, will ensure the database is free
from errors in Metamath language but will not check the markup notation
in comments; for that see Section 5.8.

5.5.5 save proof Command

Syntax: save proof label [/normal] [/compressed]
The save proof command will reformat a proof in one of two formats

and replace the existing proof in the source buffer. It is useful for converting
between proof formats. Note that a proof will not be permanently saved until
a write source command is issued.

Optional command qualifiers:
/normal - The proof is saved in the normal format (i.e., as a sequence of

labels, which is the defined format of the basic Metamath language). This
is the default format that is used if a qualifier is omitted.

5.6. CREATING PROOFS 139

/compressed - The proof is saved in the compressed format which re-
duces storage requirements for a database. See Appendix B.

5.6 Creating Proofs

Before using the Proof Assistant, you must add a $p to your source file
(using a text editor) containing the statement you want to prove. Its proof
should consist of a single ?, meaning “unknown step.” Example:

equid $p x = x $= ? $.

To enter the Proof assistant, type prove label, e.g. prove equid. Meta-
math will respond with the MM-PA> prompt.

Proofs are created working backwards from the statement being proved,
primarily using a series of assign commands. A proof is complete when
all steps are assigned to statements and all steps are unified and completely
known. During the creation of a proof, Metamath will allow only operations
that are legal based on what is known up to that point. For example, it
will not allow an assign of a statement that cannot be unified with the
unknown proof step being assigned.

Important: You should figure out your first few proofs completely and
write them down by hand, before using the Proof Assistant. Otherwise you
will become extremely frustrated. The Proof Assistant is not a tool to help
you discover proofs. It is just a tool to help you add them to the database.
For a tutorial read Section 2.4. To practice using the Proof Assistant, you
may want to prove an existing theorem, then delete all steps with delete

all, then re-create it with the Proof Assistant while looking at its proof
display (before deletion).

Important: Keep track of your work with a log file (open log) and save
it frequently (save new_proof, write source), because currently there is
no undo command! Hopefully there will be an undo command will be in a
future version. However, you can use delete to reverse an assign, and you
can do delete floating_hypotheses, then initialize all, then unify

all /interactive to reinitialize bad unifications made accidentally or by
bad assigns. You cannot reverse a delete except by exit /force then
reentering the Proof Assistant to recover from the last save new_proof.

The following commands available in the Proof Assistant (at the MM-PA>

prompt) to help you create your proof. See the individual commands for
more detail.

show new_proof [/all,...] - Displays the proof in progress. You will
use this command a lot; see help show new_proof to become famil-
iar with its qualifiers. The qualifiers /unknown and /not_unified are
useful for seeing the work remaining to be done. The combination

140 CHAPTER 5. THE METAMATH PROGRAM

/all/unknown is useful identifying dummy variables that must be as-
signed, or attempts to use illegal syntax, when improve all is unable
to complete the syntax constructions. Unknown variables are shown
as $1, $2,...

assign step label - Assigns an unknown step number with the state-
ment specified by label.

let variable variable = "symbol sequence" - Forces a symbol se-
quence to replace an unknown variable (such as $1) in a proof. It
is useful for helping difficult unifications, and it is necessary when you
have dummy variables that eventually must be assigned a name.

let step step = "symbol sequence" - Forces a symbol sequence to
replace the contents of a proof step, provided it can be unified with
the existing step contents. (I rarely use this.)

unify step step (or unify all) - Unifies the source and target of a
step. If you specify a specific step, you will be prompted to select
among the unifications that are possible. If you specify all, all steps
with unique unifications, but only those steps, will be unified. unify

all /interactive goes through all non-unified steps.

initialize step (or all) - De-unifies the target and source of a step
(or all steps), as well as the hypotheses of the source, and makes all
variables in the source unknown. Useful to recover from an assign or
let mistake that resulted in incorrect unifications.

delete step (or all or floating_hypotheses) - Deletes the specified
step(s). delete floating_hypotheses, then initialize all, then
unify all /interactive is useful for recovering from mistakes where
incorrect unifications assigned wrong math symbol strings to variables.

improve step (or all) - Automatically creates a proof for steps (with
no unknown variables) whose proof requires no statements with $e

hypotheses. Useful for filling in proofs of $f hypotheses. The /depth

qualifier will also try statements whose $e hypotheses contain no new
variables. Warning: Save your work (with save new_proof then
write source) before using /depth = 2 or greater, since the search
time grows exponentially and may never terminate in a reasonable
time, and you cannot interrupt the search. I have found that it is rare
for /depth = 3 or greater to be useful.

save new_proof - Saves the proof in progress in the program’s inter-
nal database buffer. To save it permanently into the database file,
use write source after save new_proof. To revert to the last save

new_proof, exit /force from the Proof Assistant then re-enter the
Proof Assistant.

5.6. CREATING PROOFS 141

match step step (or match all) - Shows what statements are possi-
bilities for the assign statement. (This command is not very useful
in its present form and hopefully will be improved eventually. In the
meantime, use the search statement for candidates matching specific
math token combinations.)

minimize_with - After a proof is complete, this command will attempt
to match other database theorems to the proof to see if the proof size
can be reduced as a result. See help minimize_with in the Metamath
program for its usage.

The following commands set parameters that may be relevant to your
proof. Consult the individual help set... commands.

set unification_timeout

set search_limit

set empty_substitution - note that default is off

Type exit to exit the MM-PA> prompt and get back to the MM> prompt.
Another exit will then get you out of Metamath.

5.6.1 prove Command

Syntax: prove label
This command will enter the Proof Assistant, which will allow you to cre-

ate or edit the proof of the specified statement. The command-line prompt
will change from MM> to MM-PA>.

Note: In the present version of Metamath (0.07.30), the Proof Assistant
does not verify that $d restrictions are met as a proof is being built. After
you have completed a proof, you should type save new_proof followed by
verify proof label (where label is the statement you are proving with the
prove command) to verify the $d restrictions.

See also: exit

5.6.2 set unification timeout Command

Syntax: set unification_timeout number
(This command is available outside the Proof Assistant but affects the

Proof Assistant only.)
Sometimes the Proof Assistant will inform you that a unification time-

out occurred. This may happen when you try to unify formulas with many
temporary variables ($1, $2, etc.), since the time to compute all possible
unifications may grow exponentially with the number of variables. If you
want Metamath to try harder (and you’re willing to wait longer) you may
increase this parameter. show settings will show you the current value.

142 CHAPTER 5. THE METAMATH PROGRAM

5.6.3 set empty substitution Command

Syntax: set empty_substitution on or set empty_substitution off

(This command is available outside the Proof Assistant but affects the
Proof Assistant only.)

The Metamath language allows variables to be substituted with empty
symbol sequences. However, in many formal systems this will never hap-
pen in a valid proof. Allowing for this possibility increases the likelihood
of ambiguous unifications during proof creation, and you may want to set

empty_substitution off to help make the process more efficient. With
this mode set, you may not be able to create some proofs in formal systems
that allow empty substitutions. (An example would be a system that imple-
ments a Deduction Rule and in which deductions from empty assumption
lists would be permissible. The MIU-system described in Appendix D is
another example.)

Note that this command does not affect the way proofs are verified with
the verify proof command. Outside of the Proof Assistant, substitution
of empty sequences for math symbols is always allowed.

5.6.4 set search limit Command

Syntax: set search_limit number
(This command is available outside the Proof Assistant but affects the

Proof Assistant only.)
This command sets a parameter that determines when the improve com-

mand in Proof Assistant mode gives up. If you want improve to search
harder, you may increase it. The show settings command tells you its
current value.

5.6.5 show new proof Command

Syntax: show new_proof [qualifiers (see below)]
This command (available only in Proof Assistant mode) displays the

proof in progress. It is identical to the show proof command, except that
there is no statement argument (since it is the statement being proved) and
following qualifiers are not available:

/statement_summary

/detailed_step

Also, the following additional qualifiers are available:
/unknown - Shows only steps that have no statement assigned.
/not_unified - Shows only steps that have not been unified.
Note that /essential, /depth, /unknown, and /not_unified may be

used in any combination; each of them effectively filters out additional steps
from the proof display.

See also: show proof

5.6. CREATING PROOFS 143

5.6.6 assign Command

Syntax: assign step label
and: assign first label
and: assign last label
This command, available in the Proof Assistant only, assigns an unknown

step (one with ? in the show new_proof listing) with the statement specified
by label. The assignment will not be allowed if the statement cannot be
unified with the step.

If last is specified instead of step number, the last step that is shown by
show new_proof /unknown will be used. This can be useful for building a
proof with a command file (see help submit). It also makes building proofs
faster when you know the assignment for the last step.

If first is specified instead of step number, the first step that is shown
by show new_proof /unknown will be used.

If step is zero or negative, the -stepth from last unknown step, as shown
by show new_proof /unknown, will be used. assign -1 label will assign
the penultimate unknown step, assign -2 label the antepenultimate, and
assign 0 label is the same as assign last label.

Optional command qualifier:
/no_unify - do not prompt user to select a unification if there is more

than one possibility. This is useful for noninteractive command files. Later,
the user can unify all /interactive. (The assignment will still be au-
tomatically unified if there is only one possibility and will be refused if
unification is not possible.)

5.6.7 match Command

Syntax: match step step [/max_essential_hyp number]
and: match all [/essential] [/max_essential_hyp number]
This command, available in the Proof Assistant only, shows what state-

ments can be unified with the specified step(s). Note: In its current form,
this command is not very useful because of the large number of matches it
reports. I rarely use it. It may be enhanced in the future.

Optional command qualifiers:
/max_essential_hyp number - filters out of the list any statements with

more than the specified number of $e hypotheses
/essential_only - in the match all statement, only the steps that

would be listed in show new_proof /essential display are matched.

5.6.8 let Command

Syntax: let variable variable = "symbol-sequence"
and: let step step = "symbol-sequence"

144 CHAPTER 5. THE METAMATH PROGRAM

These commands, available in the Proof Assistant only, assign a tem-
porary variable or unknown step with a specific symbol sequence. They
are useful in the middle of creating a proof, when you know what should
be in the proof step but the unification algorithm doesn’t yet have enough
information to completely specify the temporary variables. A “temporary
variable” is one that has the form $nn in the proof display, such as $1, $2,
etc. The symbol-sequence may contain other unknown variables if desired.
Examples:

let variable $32 = "A = B"

let variable $32 = "A = $35"

let step 10 = ’|- x = x’

let step -2 = "|- ($7 = ph)"

Any symbol sequence will be accepted for the let variable command.
Only those symbol sequences that can be unified with the step will be ac-
cepted for let step.

The let commands “zap” the proof with information that can only
be verified when the proof is built up further. If you make an error, the
command sequence delete floating_hypotheses, initialize all, and
unify all /interactive will undo a bad let assignment.

If step is zero or negative, the -stepth from last unknown step, as shown
by show new_proof /unknown, will be used. The command let step 0 =
"symbol-sequence" will use the last unknown step, let step -1 = "symbol-
sequence" the penultimate, etc. If step is positive, let step may be used to
assign known (in the sense of having previously been assigned a label with
assign) as well as unknown steps.

Either single or double quotes can surround the symbol-sequence as long
as they are different from any quotes inside of symbol-sequence. If symbol-
sequence contains both kinds of quotes, see the instructions at the end of
help let in the Metamath program.

5.6.9 unify Command

Syntax: unify step step
and: unify all [/interactive]
These commands, available in the Proof Assistant only, unify the source

and target of the specified step(s). If you specify a specific step, you will be
prompted to select among the unifications that are possible. If you specify
all, only those steps with unique unifications will be unified.

Optional command qualifier for unify all:
/interactive - You will be prompted to select among the unifications

that are possible for any steps that do not have unique unifications. (Oth-
erwise unify all will bypass these.)

See also set unification_timeout. The default is 100000, but increas-
ing it to 1000000 can help difficult cases. Manually assigning some or all of

5.6. CREATING PROOFS 145

the unknown variables with the let variable command also helps difficult
cases.

5.6.10 initialize Command

Syntax: initialize step step
and: initialize all

These commands, available in the Proof Assistant only, “de-unify” the
target and source of a step (or all steps), as well as the hypotheses of the
source, and makes all variables in the source and the source’s hypotheses
unknown. This command is useful to help recover from incorrect unifications
that resulted from an incorrect assign, let, or unification choice. Part or
all of the command sequence delete floating_hypotheses, initialize
all, and unify all /interactive will cover from incorrect unifications.

See also: unify and delete

5.6.11 delete Command

Syntax: delete step step
and: delete all – Warning: dangerous!
and: delete floating_hypotheses

These commands are available in the Proof Assistant only. The delete

step command deletes the proof tree section that branches off of the speci-
fied step and makes the step become unknown. delete all is equivalent to
delete step step where step is the last step in the proof (i.e. the beginning
of the proof tree).

There is currently no undo command, and you cannot reverse a delete.
The best you can do is salvage your last save new_proof by exiting and
reentering the Proof Assistant. For this reason, it is important to keep a
log file open to record your work and to do save new_proof frequently,
especially before delete.

delete floating_hypotheses will delete all sections of the proof that
branch off of $f statements. It is sometimes useful to do this before an
initialize command to recover from an error. Note that once a proof
step with a $f hypothesis as the target is completely known, the improve

command can usually fill in the proof for that step. Unlike the deletion of
logical steps, delete floating_hypotheses is a relatively safe command
that is usually easy to recover from.

5.6.12 improve Command

Syntax: improve step [/depth number] [/no_distinct]
and: improve first [/depth number] [/no_distinct]
and: improve last [/depth number] [/no_distinct]
and: improve all [/depth number] [/no_distinct]

146 CHAPTER 5. THE METAMATH PROGRAM

These commands, available in the Proof Assistant only, try to find proofs
automatically for unknown steps whose symbol sequences are completely
known. They are primarily useful for filling in proofs of $f hypotheses. The
search will be restricted to statements having no $e hypotheses.

Note: If memory is limited, improve all on a large proof may over-
flow memory. If you use set unification_timeout 1 before improve all,
there will usually be sufficient improvement to easily recover and completely
improve the proof later on a larger computer. Warning: Once memory has
overflowed, there is no recovery. If in doubt, save the intermediate proof
(save new_proof then write source) before improve all.

If last is specified instead of step number, the last step that is shown
by show new_proof /unknown will be used.

If first is specified instead of step number, the first step that is shown
by show new_proof /unknown will be used.

If step is zero or negative, the -stepth from last unknown step, as shown
by show new_proof /unknown, will be used. improve -1 will use the penul-
timate unknown step, improve -2 label the antepenultimate, and improve

0 is the same as improve last.
Optional command qualifier:
/depth number - This qualifier will cause the search to include state-

ments with $e hypotheses (but no new variables in the $e hypotheses), pro-
vided that the backtracking has not exceeded the specified depth. Warn-
ing: Try /depth 1, then 2, then 3, etc in sequence because of possible
exponential blowups. Save your work before trying /depth greater than
1! /no_distinct - Skip trial statements that have $d requirements. This
qualifier will prevent assignments that might violate $d requirements but it
also could miss possible legal assignments.

See also: set search_limit

5.6.13 save new proof Command

Syntax: save new_proof label [/normal] [/compressed]
The save new_proof command is available in the Proof Assistant only.

It saves the proof in progress in the source buffer. save new_proof may
be used to save a completed proof, or it may be used to save a proof in
progress in order to work on it later. If an incomplete proof is saved, any
user assignments with let step or let variable will be lost, as will any
ambiguous unifications that were resolved manually. To help make recovery
easier, it can be helpful to improve all before save new_proof so that the
incomplete proof will have as much information as possible.

Note that the proof will not be permanently saved until a write source

command is issued.
Optional command qualifiers:
/normal - The proof is saved in the normal format (i.e., as a sequence of

labels, which is the defined format of the basic Metamath language). This

5.7. CREATING LATEX OUTPUT 147

is the default format that is used if a qualifier is omitted.
/compressed - The proof is saved in the compressed format, which re-

duces storage requirements for a database. (See Appendix B.)

5.7 Creating LATEX Output

The show statement and show proof commands each have a special /tex
command qualifier that produces LATEX output. (The show statement com-
mand also has the /simple_tex qualifier for output that is easier to edit
by hand.) Before you can use them, you must open a LATEX file to which
to send their output. A typical complete session will use this sequence of
Metamath commands:

read set.mm

open tex example.tex

show statement a1i /tex

show proof a1i /lemmon/renumber/tex

show statement uneq2 /tex

show proof uneq2 /lemmon/renumber/tex

close tex

See Section 4.4.1 for information on comment markup and Appendix A
for information on how math symbol translation is specified.

To format and print the LATEX source, you will need the LATEX program,
which is standard on most Linux installations and available for Windows.
On Linux, in order to create a pdf file, you will typically type at the shell
prompt

$ pdflatex example.tex

5.7.1 open tex Command

Syntax: open tex file-name [/no_header]
This command opens a file for writing LATEX source and writes a LATEX

header to the file. LATEX source can be written with the show proof, show
new_proof, and show statement commands using the /tex qualifier.

The mapping to LATEX symbols is defined in a special comment contain-
ing a $t token, described in Appendix A.

Optional command qualifier:
/no_header - This qualifier prevents a standard LATEX header and trailer

from being included with the output LATEX code.

5.7.2 close tex Command

Syntax: close tex

148 CHAPTER 5. THE METAMATH PROGRAM

This command writes a trailer to any LATEX file that was opened with
open tex (unless /no_header was used with open tex) and closes the LATEX
file.

5.8 Creating HTML Output

The ability to produce html web pages is new in Metamath version 0.07.30.
To create an html output file for a $a or $p statement, use

show statement label /html

The output file will be named label.html. When label has wildcard (*)
characters, all statements with matching labels will have html files produced
for them. Also, when label has a wildcard (*) character, two additional
files, mmdefinitions.html and mmascii.html will be produced. To produce
only these two additional files, you can use ?*, which will not match any
statement label, in place of label.

There are three other qualifiers for show statement that also generate
HTML code. These are /alt_html, /brief_html, and /brief_alt_html,
and are described in the next section.

A statement’s comment can include a special notation that provides a
certain amount of control the HTML version of the comment. See Sec-
tion 4.4.1 (p. 121) for the comment markup features.

The write theorem_list and write bibliography commands, which
are described below, provide as a side effect complete error checking for all
of the features described in this section. (Currently there is no separate
command to check for these errors.)

5.8.1 The Typesetting Comment ($t)

The html definitions for math symbols, as well as some customization of
the generated web page, are specified by statements in a special typesetting
comment in the input database file. The typesetting comment is identified
by the token $t in the comment, and the typesetting statements run until
the next $):

$($t · · ·︸ ︷︷ ︸
html definitions go here

$)

In version 0.07.30 of the Metamath program, there may be only one
$t comment in a database. See the set.mm database file for an extensive
example of a $t comment illustrating all of the features described below. In
the html definition section, c-style comments /*. . . */ are recognized. The
main html specification statements are:

htmldef "math-token" as "html-code" ;

. . .

5.8. CREATING HTML OUTPUT 149

htmldef "math-token" as "html-code" ;

htmltitle "html-code" ;

htmlhome "html-code" ;

htmlvarcolors "html-code" ;

htmlbibliography "filename" ;

The htmltitle is the html code for a common title, such as “Metamath
Proof Explorer.” The htmlhome is code for a link back to the home page.
The htmlvarcolors is code for a color key that appears at the bottom of
each proof. The file specified by filename is an html file that is assumed
to have a tag for each bibiographic reference in the database
comments. For example, if [Monk] occurs in the comment for a theorem,
then must be present in the file; if not, a warning message
is given.

Single or double quotes surround the html-code strings and the filename
string. Strings too long for a line may be broken up as descibed for the
latexdef statement in Appendix A. That Appendix also describes how to
handle strings containing quote characters.

The $t comment may also contain LATEX definitions (with latexdef

statements—see Appendix A) that are ignored for html output.
Several other html-related qualifiers exist for the show statement com-

mand. The command

show statement label /alt_html

does the same as show statement label /html, except that the html code
for the symbols is taken from althtmldef statements instead of htmldef

statements in the $t comment.

althtmldef "math-token" as "html-code" ;

. . .
althtmldef "math-token" as "html-code" ;

This feature is useful when an alternate representation of symbols is
desired, for example one that uses Unicode entities instead of gif images.
Associated with althtmldef are the statements

htmldir "directoryname" ;

althtmldir "directoryname" ;

giving the directories of the gif and Unicode versions respectively; their
purpose is to provide cross-linking between the two versions in the generated
web pages.

The command

show statement * /brief_html

invokes a special mode that just produces definition and theorem lists ac-
companied by their symbol strings, in a format suitable for copying and

150 CHAPTER 5. THE METAMATH PROGRAM

pasting into another web page (such as the tutorial pages on the Metamath
web site).

Finally, the command

show statement * /brief_alt_html

does the same as show statement * / brief_html for the alternate html
symbol representation.

When two different types of pages need to be produced from a single
database, such as the Hilbert Space Explorer that extends the Metamath
Proof Explorer, “extended” variables may be declared in the $t comment:

exthtmltitle "html-code" ;

exthtmlhome "html-code" ;

exthtmlbibliography "filename" ;

When these are declared, you also must declare

exthtmllabel "label" ;

that identifies the database statement where the “extended” section of the
database starts (in our example, where the Hilbert Space Explorer starts).
During the generation of web pages for that starting statement and the state-
ments after it, the html code assigned to exthtmltitle and exthtmlhome

is used instead of that assigned to htmltitle and htmlhome, respectively.
If you want to become familiar with these features, you should study

them in conjunction with the set.mm database example, in order to under-
stand the details that aren’t precisely specified above, such as exactly what
the html code snippets should look like.

5.8.2 write theorem list Command

Syntax: write theorem_list [/theorems_per_page number]
This command writes a list of all of the $a and $p statements in the

database into a web page file called mmtheorems.html. When additional
files are needed, they are called mmtheorems2.html, mmtheorems3.html,
etc.

Optional command qualifier:
/theorems_per_page number - This qualifier specifies the number of

statements to write per web page. The default is 100.
Note: In version 0.07.30 of Metamath, the “Related Theorems” links on

the individual web pages presuppose 100 theorems per page when linking
to the theorem list pages. Therefore the /theorems_per_page qualifier, if
it specifies a number other than 100, will cause the individual web pages to
be out of sync and should not be used to generate the main theorem list for
the web site. This is expected to be fixed in a future version.

5.9. TEXT FILE UTILITIES 151

5.8.3 write bibliography Command

Syntax: write bibliography filename
This command reads an existing html bibliographic cross-reference file,

normally called mmbiblio.html, and updates it per the bibliographic links
in the database comments. The file is updated between the html comment
lines <!-- #START# --> and <!-- #END# -->. The original input file is
renamed to filename~1.

A bibliographic reference is indicated with the reference name in brack-
ets, such as Theorem 3.1 of [Monk] p. 22. See Section 4.4.2 (p. 121) for
syntax details.

5.8.4 write recent additions Command

Syntax: write recent_additions filename [/limit number]
This command reads an existing “Recent Additions” html file, normally

called mmrecent.html, and updates it with the descriptions of the most
recently added theorems to the database. The file is updated between the
html comment lines <!-- #START# --> and <!-- #END# -->. The original
input file is renamed to filename~1.

Optional command qualifier:
/limit number - This qualifier specifies the number of most recent the-

orems to write to the output file. The default is 100.

5.9 Text File Utilities

5.9.1 tools Command

Syntax: tools
This command invokes an easy-to-use, general purpose utility for manip-

ulating the contents of ascii text files. Upon typing tools, the command-
line prompt will change to TOOLS> until you type exit. The tools com-
mands can be used to perform simple, global edits on an input/output file,
such making a character string substitution on each line, adding a string to
each line, and so on. A typical use of this utility is to build a submit input
file to perform a common operation on a list of statements obtained from
show label or show usage.

The actions of most of the tools commands can also be performed with
equivalent (and more powerful) Unix shell commands, and some users may
find those more efficient. But for Windows users or users not comfortable
with Unix, tools provides an easy-to-learn alternative that is adequate for
most of the script-building tasks needed to use the Metamath program ef-
fectively.

152 CHAPTER 5. THE METAMATH PROGRAM

5.9.2 help Command (in tools)

Syntax: help
The help command lists the commands available in the tools utility,

along with a brief description. Each command, in turn, has its own help,
such as help add. As with Metamath’s MM> prompt, a complete command
can be entered at once, or just the command word can be typed, causing to
program to prompt for each argument.

Line-by-line editing commands:
add - Add a specified string to each line in a file.
clean - Trim spaces and tabs on each line in a file; convert characters.
delete - Delete a section of each line in a file.
insert - Insert a string at a specified column in each line of a file.
substitute - Make a simple substitution on each line of the file.
swap - Swap the two halves of each line in a file.

Other file processing commands:
break - Break up (parse) a file into a list of tokens (one per line).
build - Build a file with multiple tokens per line from a list.
count - Count the occurrences in a file of a specified string.
number - Create a list of numbers.
parallel - Put two files in parallel.
reverse - Reverse the order of the lines in a file.
right - Right-justify lines in a file (useful before sorting numbers).
sort - Sort the lines in a file with key starting at specified string.
match - Extract lines containing (or not) a specified string.
unduplicate - Eliminate duplicate occurrences of lines in a file.
duplicate - Extract first occurrence of any line occurring more than

once in a file, discarding lines occurring exactly once.
unique - Extract lines occurring exactly once in a file.
type (10 lines) - Display the first few lines in a file. Similar to Unix

head.
copy - Similar to Unix cat but safe (same input and output file allowed).
submit - Run a script containing tools commands.

Note: unduplicate, duplicate, and unique also sort the lines as a side
effect.

5.9.3 Using tools to Build Metamath submit Scripts

The break command is typically used to break up a series of statement
labels, such as the output of Metamath’s show usage, into one label per
line. The other tools commands can then be used to add strings before
and after each statement label to specify commands to be performed on the
statement. The parallel command is useful when a statement label must
be mentioned more than once on a line.

5.9. TEXT FILE UTILITIES 153

Very often a submit script for Metamath will require multiple command
lines for each statement being processed. For example, you may want to
enter the Proof Assistant, minimize_with your latest theorem, save the
new proof, and exit the Proof Assistant. To accomplish this, you can
build a file with these four commands for each statement on a single line,
separating each command with a designated character such as @. Then at
the end you can substitute each @ with \n to break up the lines into
individual command lines (see help substitute).

5.9.4 Example of a tools Session

To give you a quick feel for the tools utility, we show a simple session where
we create a file n.txt with 3 lines, add strings before and after each line,
and display the lines on the screen. You can experiment with the various
commands to gain experience with the tools utility.

MM> tools

Entering the Text Tools utilities.

Type HELP for help, EXIT to exit.

TOOLS> number

Output file <n.tmp>? n.txt

First number <1>?

Last number <10>? 3

Increment <1>?

TOOLS> add

Input/output file? n.txt

String to add to beginning of each line <>? This is line

String to add to end of each line <>? .

The file n.txt has 3 lines; 3 were changed.

First change is on line 1:

This is line 1.

TOOLS> type n.txt

This is line 1.

This is line 2.

This is line 3.

TOOLS> exit

Exiting the Text Tools.

Type EXIT again to exit Metamath.

MM>

154 CHAPTER 5. THE METAMATH PROGRAM

Appendix A

Math Symbol Tokens for
Set Theory

This Appendix lists the tokens (math symbols) used for basic set theory
development (up to complex numbers) in the set.mm database, in order of
appearance. Next to each token we show the mathematical symbol that
corresponds to it. The set.mm file has an explanation of the meaning of
each symbol. (New definitions are added to set.mm over time. Consult the
latest version at http://metamath.org for the most recent additions.)

These symbols are defined in the set.mm database file inside of a special
comment, which is indicated by the appearance of the two-character string
$t at the beginning of the comment (see Section 5.8.1, p. 148). This special
comment is called a $t comment or typesetting comment.

The definitions in the $t comment are referenced by the write tex

command to produce LATEX output. If you add a new token to the set theory
database (or your own database), you should also update the $t comment
if you want to create a LATEX output file. The $t comment is not needed
for normal operation of the Metamath program, but is referenced only when
you open a LATEX output file with the open tex command. The $t comment
consists of a series of LATEX definitions with the following syntax:

latexdef token-string as latex-string ;

The fields are separated by white space (blanks, carriage returns, etc.),
although white space is not needed before the ; terminator. Each definition
should start on a new line.1 For example,

latexdef "(_" as "\subseteq";

1This restriction of the current version of Metamath (0.07.30) may be removed in a
future version, but you should do it anyway for readability.

155

http://metamath.org

156 APPENDIX A. MATH SYMBOL TOKENS FOR SET THEORY

defines the token (_ as the LATEX symbol ⊆ (which means “subset”).
The token-string and latex-string are the character strings for the to-

ken and the LATEX definition of the token, respectively, enclosed in either
double (") or single (’) quotation marks. The string enclosed in quotation
marks may not include line breaks. A token-string or latex-string may in-
clude a quotation mark that matches the enclosing quotes by repeating the
quotation mark twice; for example the token-string s

"a""b"

’c’’d’

"e’’f"

’g""h’

specify the tokens a"b, c’d, e’’f, and g""h respectively. Finally, a long
latex-string may be broken up into multiple quote-enclosed strings joined by
+ in order to fit them on several lines; thus

"ab" + "cd" + ’ef’

is the same as

"abcdef"

The $t comment may also contain htmldef statements, althtmldef

statements, and some other types of statements related to the generation of
html pages for the Metamath web site. The syntax for these is not yet final,
and for current information you should consult help html in the Metamath
program. Importantly, whenever you add a latexdef statement, you should
also add a new htmldef statement and a new althtmldef statement to keep
all symbol definitions up to date.

157

Token Symbol Token Symbol Token Symbol

((B B dom dom
)) C C ran ran
-> → D D |‘ �
-. ¬ R R " “
wff wff S S o. ◦
|- ` =/= 6= Rel Rel
ph ϕ e/ /∈ Fun Fun
ps ψ V V Fn Fn
ch χ F F : :
th θ G G --> −→
ta τ (_ ⊆ -1-1->

1 -1−→
<-> ↔ (. ⊂ -onto-> −→

onto

\/ ∨ \ \ -1-1-onto->
1 -1−→
onto

/\ ∧ u. ∪ ‘ ‘
et η i^i ∩ h h
ze ζ (/) ∅ H H
A. ∀ P~ P rec rec
set set , , +_o +o

x x <. 〈 ._o ·o
y y >. 〉 ^_o ô

z z U.
⋃

1_o 1o
w w |^|

⋂
Er Er

v v Tr Tr [[
E. ∃ E E]]
= = I I /. �
e. ∈ Po Po Q Q
| | Or Or t t
u u Fr Fr s s
f f We We r r
g g Ord Ord a a
E! ∃! On On b b
E* ∃∗ Lim Lim c c
{ { suc suc d d
} } om ω j j
class class X. × k k
A A ‘’ ˘ m m

158 APPENDIX A. MATH SYMBOL TOKENS FOR SET THEORY

Token Symbol Token Symbol Token Symbol

n n +R +R
q q .R ·R
J J <R <R
K K CC C
L L RR R
M M 0 0
N N 1 1
W W i i
X X + +
Y Y - −
Z Z x. ·
N. N < <
+N +N / /
.N ·N > >
<N <N <_ ≤
+pQ +pQ >_ ≥
.pQ ·pQ NN N
~Q ∼Q ZZ Z
Q. Q QQ Q
1Q 1Q 2 2
+Q +Q 3 3
.Q ·Q 4 4
*Q ∗Q 5 5
<Q <Q 6 6
P. P 7 7
1P 1P 8 8
+P +P 9 9
.P ·P
<P <P
+pR +pR
.pR .pR
~R ∼R
R. R
0R 0R
1R 1R
-1R −1R

Appendix B

Compressed Proofs

The proofs in the set.mm set theory database are stored in compressed
format for efficiency. Normally you needn’t concern yourself with the com-
pressed format, since you can display it with the usual proof display tools in
the Metamath program (show proof. . .) or convert it to the normal RPN
proof format described in the Section 4.3 (with save proof label /normal).
However for sake of completeness we describe the format here and show how
it maps to the normal RPN proof format.

A compressed proof, located between $= and $. keywords, consists of
a left parenthesis, a sequence of statement labels, a right parenthesis, and
a sequence of upper-case letters A through Z (with optional white space
between them). White space must surround the parentheses and the labels.
The left parenthesis tells Metamath that a compressed proof follows. (A
normal RPN proof consists of just a sequence of labels, and a parenthesis is
not a legal character in a label.)

The sequence of upper-case letters corresponds to a sequence of integers
with the following mapping. Each integer corresponds to a proof step as
described later.

A = 1
B = 2

. . .
T = 20
UA = 21
UB = 22

. . .
UT = 40
VA = 41
VB = 42

. . .
YT = 120

159

160 APPENDIX B. COMPRESSED PROOFS

UUA = 121
. . .

YYT = 620
UUUA = 621

etc.

In other words, A through T represent a least-significant digit in base
20, and U through Y represent zero or more most-significant digits in base
5, where the digits start counting at 1 instead of the usual 0. With this
scheme, we don’t need white space between these “numbers.”

(In the design of the compressed proof format, only upper case letters,
as opposed to say all printable ascii characters other than $, were chosen
so as not to collide with most text editor searches, at the expense of a
typical 20% compression loss. The base 5/base 20 grouping, as opposed to
say base 6/base 19, was chosen by experimentally determining the grouping
that resulted in best typical compression.)

The letter Z identifies (tags) a proof step that is identical to one that
occurs later on in the proof; it helps shorten the proof by not requiring that
identical proof steps be proved over and over again (which happens often
when building wff’s). The Z is placed immediately after the least-significant
digit (letters A through T) that ends the integer corresponding to the step
to later be referenced.

The integers that the upper-case letters correspond to are mapped to
labels as follows. If the statement being proved has m mandatory hypothe-
ses, integers 1 through m correspond to the labels of these hypotheses in the
order shown by the show statement ... / full command, i.e., the RPN
order of the mandatory hypotheses. Integers m + 1 through m + n corre-
spond to the labels enclosed in the parentheses of the compressed proof, in
the order that they appear, where n is the number of those labels. Integers
m + n + 1 on up don’t directly correspond to statement labels but point
to proof steps identified with the letter Z, so that these proof steps can be
referenced later in the proof. Integer m+n+ 1 corresponds to the first step
tagged with a Z, m + n + 2 to the second step tagged with a Z, etc. When
the compressed proof is converted to a normal proof, the entire subproof of
a step tagged with Z replaces the reference to that step.

For efficiency, Metamath works with compressed proofs directly, without
converting them internally to normal proofs. In addition to the usual error-
checking, an error message is given if (1) a label in the label list in paren-
theses does not refer to a previous $p or $a statement or a non-mandatory
hypothesis of the statement being proved and (2) a proof step tagged with
Z is referenced before the step tagged with the Z.

Just as in a normal proof under development (Section 4.4.5), any step or
subproof that is not yet known may be represented with a single ?. White
space does not have to appear between the ? and the upper-case letters (or
other ?’s) representing the remainder of the proof.

Appendix C

Metamath’s Formal
System

C.1 Introduction

Perfection is when there is no longer anything more to take away.

Antoine de Saint-Exupery1

This appendix describes the theory behind the Metamath language in
an abstract way intended for mathematicians. Specifically, we construct two
set-theoretical objects: a “formal system” (roughly, a set of syntax rules,
axioms, and logical rules) and its “universe” (roughly, the set of theorems
derivable in the formal system). The Metamath computer language provides
us with a way to describe specific formal systems and, with the aid of a proof
provided by the user, to verify that given theorems belong to their universes.

To understand this appendix, you need a basic knowledge of informal
set theory. It should be sufficient to understand, for example, Ch. 1 of
Munkres’ Topology [41] or the introductory set theory chapter in many text-
books that introduce abstract mathematics. (Note that there are minor
notational differences among authors; e.g. Munkres uses ⊂ instead of our ⊆
for “subset.” We use “included in” to mean “a subset of,” and “belongs to”
or “is contained in” to mean “is an element of.”) What we call a “formal”
description here, unlike earlier, is actually an informal description in the
ordinary language of mathematicians. However we provide sufficient detail
so that a mathematician could easily formalize it, even in the language of
Metamath itself if desired. To understand the logic examples at the end of
this appendix, familiarity with an introductory book on mathematical logic
would be helpful.

1[9, p. 3-25]

161

162 APPENDIX C. METAMATH’S FORMAL SYSTEM

C.2 The Formal Description

C.2.1 Preliminaries2

By ω we denote the set of all natural numbers (non-negative integers). Each
natural number n is identified with the set of all smaller numbers: n =
{m|m < n}. The formula m < n is thus equivalent to the condition: m ∈ n
and m,n ∈ ω. In particular, 0 is the number zero and at the same time the
empty set ∅, 1 = {0}, 2 = {0, 1}, etc. BA denotes the set of all functions
on B to A (i.e. with domain B and range included in A). The members of
ωA are what are called simple infinite sequences, with all terms in A. In
case n ∈ ω, the members of nA are referred to as finite n-termed sequences,
again with terms in A. The consecutive terms (function values) of a finite or
infinite sequence f are denoted by f0, f1, . . . , fn, Every finite sequence
f ∈

⋃
n∈ω

nA uniquely determines the number n such that f ∈ nA; n is
called the length of f and is denoted by |f |. 〈a〉 is the sequence f with
|f | = 1 and f0 = a; 〈a, b〉 is the sequence f with |f | = 2, f0 = a, f1 = b; etc.
Given two finite sequences f and g, we denote by f _ g their concatenation,
i.e., the finite sequence h determined by the conditions:

|h| = |f |+ |g|;
hn = fn for n < |f |;

h|f |+n = gn for n < |g|.

C.2.2 Constants, Variables, and Expressions

A formal system has a set of symbols denoted by SM. A precise set-theo-
retical definition of this set is unimportant; a symbol could be considered
a primitive or atomic element if we wish. We assume this set is divided
into two disjoint subsets: a set CN of constants and a set VR of variables.
CN and VR are each assumed to consist of countably many symbols which
may be arranged in finite or simple infinite sequences c0, c1, . . . and v0, v1, . . .
respectively, without repeating terms. We will represent arbitrary symbols
by metavariables α, β, etc.

Comment. The variables v0, v1, . . . of our formal system correspond
to what are usually considered “metavariables” in descriptions of specific
formal systems in the literature. Typically, when describing a specific formal
system a book will postulate a set of primitive objects called variables, then
proceed to describe their properties using metavariables that range over
them, never mentioning again the actual variables themselves. Our formal
system does not mention these primitive variable objects at all but deals
directly with metavariables, as its primitive objects, from the start. This
is a subtle but key distinction you should keep in mind, and it makes our
definition of “formal system” somewhat different from that typically found
in the literature. (So, the α, β, etc. above are actually “metametavariables”
when used to represent v0, v1,)

2This section is taken mostly verbatim from Tarski [61, p. 63].

C.2. THE FORMAL DESCRIPTION 163

Finite sequences all terms of which are symbols are called expressions.
EX is the set of all expressions; thus

EX =
⋃
n∈ω

nSM.

A constant-prefixed expression is a an expression of non-zero length whose
first term is a constant. We denote the set of all constant-prefixed expres-
sions by EXC = {e ∈ EX|(|e| > 0 ∧ e0 ∈ CN)}.

A constant-variable pair is an expression of length 2 whose first term is
a constant and whose second term is a variable. We denote the set of all
constant-variable pairs by EX2 = {e ∈ EXC |(|e| = 2 ∧ e1 ∈ VR)}.

Relationship to Metamath. In general, the set SM corresponds to the
set of declared math symbols in a Metamath database, the set CN to those
declared with $c statements, and the set VR to those declared with $v

statements. Of course a Metamath database can only have a finite number
of math symbols, whereas formal systems in general can have an infinite
number, although the number of Metamath math symbols available is in
principle unlimited.

The set EXC corresponds to the set of permissible expressions for $e,
$a, and $p statements. The set EX2 corresponds to the set of permissible
expressions for $f statements.

We denote by V(e) the set of all variables in an expression e ∈ EX, i.e.
the set of all α ∈ VR such that α = en for some n < |e|. We also denote
(with abuse of notation) by V(E) the set of all variables in a collection of
expressions E ⊆ EX, i.e.

⋃
e∈E V(e).

C.2.3 Substitution

Given a function F from VR to EX, we denote by σF or just σ the function
from EX to EX defined recursively for nonempty sequences by

σ(< α >) = F (α) for α ∈ VR;

σ(< α >) =< α > for α 6∈ VR;

σ(g _ h) = σ(g) _ σ(h) for g, h ∈ EX.

We also define σ(∅) = ∅. We call σ a simultaneous substitution (or just
substitution) with substitution map F .

We also denote (with abuse of notation) by σ(E) a substitution on a
collection of expressions E ⊆ EX, i.e. the set {σ(e)|e ∈ E}. The collection
σ(E) may of course contain fewer expressions than E because duplicate
expressions could result from the substitution.

C.2.4 Statements

We denote by DV the set of all unordered pairs {α, β} ⊆ VR such that
α 6= β. DV stands for “distinct variables.”

164 APPENDIX C. METAMATH’S FORMAL SYSTEM

A pre-statement is a quadruple 〈D,T,H,A〉 such that D ⊆ DV, T ⊆
EX2, H ⊆ EXC and H is finite, A ∈ EXC , V(H ∪ {A}) ⊆ V(T), and
∀e, f ∈ T V(e) 6= V(f) (or equivalently, e1 6= f1) whenever e 6= f . The
terms of the quadruple are called distinct-variable restrictions, variable-type
hypotheses, logical hypotheses, and the assertion respectively. We denote by
TM (mandatory variable-type hypotheses) the subset of T such that V(TM) =
V(H ∪ {A}). We denote by DM = {{α, β} ∈ D|{α, β} ⊆ V(TM)} the
mandatory distinct-variable restrictions of the pre-statement. The set of
mandatory hypotheses is TM ∪ H. We call the quadruple 〈DM , TM , H,A〉
the reduct of the pre-statement 〈D,T,H,A〉.

A statement is the reduct of some pre-statement. A statement is therefore
a special kind of pre-statement; in particular, a statement is the reduct of
itself.

Comment. T is a set of expressions, each of length 2, that associate a set
of constants (“variable types”) with a set of variables. The condition V(H∪
{A}) ⊆ V(T) means that each variable occurring in a statement’s logical
hypotheses or assertion must have an associated variable-type hypothesis
or “type declaration,” in analogy to a computer programming language,
where a variable must be declared to be say, a string or an integer. The
requirement that ∀e, f ∈ T e1 6= f1 for e 6= f means that each variable must
be associated with a unique constant designating its variable type; e.g., a
variable might be a “wff” or a “set” but not both.

Distinct-variable restrictions are used to specify what variable substi-
tutions are permissible to make for the statement to remain valid. For
example, in the theorem scheme of set theory ¬∀xx = y we may not sub-
stitute the same variable for both x and y. On the other hand, the theorem
scheme x = y → y = x does not require that x and y be distinct, so we do
not require a distinct-variable restriction, although having one would cause
no harm other than making the scheme less general.

A mandatory variable-type hypothesis is one whose variable exists in
a logical hypothesis or the assertion. A provable pre-statement (defined
below) may require non-mandatory variable-type hypotheses that effectively
introduce “dummy” variables for use in its proof. Any number of dummy
variables might be required by a specific proof; indeed, it has been shown by
H. Andréka [43] that there is no finite upper bound to the number of dummy
variables needed to prove an arbitrary theorem in first-order logic (with
equality) having a fixed number n > 2 of individual variables. (See also the
Comment on p. 105.) For this reason we do not set a finite size bound on the
collections D and T , although in an actual application (Metamath database)
these will of course be finite, increased to whatever size is necessary as more
proofs are added.

Relationship to Metamath. A pre-statement of a formal system corre-
sponds to an extended frame in a Metamath database (Section 4.2.7). The
collections D, T , and H correspond respectively to the $d, $f, and $e state-
ment collections in an extended frame. The expression A corresponds to the
$a (or $p) statement in an extended frame.

A statement of a formal system corresponds to a frame in a Metamath
database.

C.2. THE FORMAL DESCRIPTION 165

C.2.5 Formal Systems

A formal system is a triple 〈CN,VR,Γ〉 where Γ is a set of statements. The
members of Γ are called axiomatic statements. Sometimes we will refer to a
formal system by just Γ when CN and VR are understood.

Given a formal system Γ, the closure3 of a pre-statement 〈D,T,H,A〉 is
the smallest set C of expressions such that:

1. T ∪H ⊆ C; and

2. If for some axiomatic statement 〈D′M , T ′M , H ′, A′〉 ∈ Γ and for some
substitution σ we have

a. σ(T ′M ∪H ′) ⊆ C; and

b. for all {α, β} ∈ D′M , for all γ ∈ V(σ(〈α〉)), and for all δ ∈
V(σ(〈β〉)), we have {γ, δ} ∈ D;

then σ(A′) ∈ C.

A pre-statement 〈D,T,H,A〉 is provable if A ∈ C i.e. if its assertion belongs
to its closure. A statement is provable if it is the reduct of a provable
pre-statement. The universe of a formal system is the collection of all of
its provable statements. Note that the set of axiomatic statements Γ in a
formal system is a subset of its universe.

Comment. The first condition in the definition of closure simply says
that the hypotheses of the pre-statement are in its closure.

Condition 2(a) says that a substitution exists that makes the mandatory
hypotheses of an axiomatic statement exactly match some members of the
closure. This is what we explicitly demonstrate in a Metamath language
proof.

Condition 2(b) describes how distinct-variable restrictions in the ax-
iomatic statement must be met. It means that after a substitution for two
variables that must be distinct, the resulting two expressions must either
contain no variables, or if they do, they may not have variables in common,
and each pair of any variables they do have, with one variable from each
expression, must be specified as distinct in the original statement.

Relationship to Metamath. Axiomatic statements and provable state-
ments in a formal system correspond to the frames for $a and $p statements
respectively in a Metamath database. The set of axiomatic statements are
a subset of the set of provable statements in a formal system, although in a
Metamath database a $a statement is distinguished by not having a proof.
A Metamath language proof for a $p statement tells the computer how to
explicitly construct a series of members of the closure ultimately leading
to a demonstration that the assertion being proved is in the closure. The
actual closure typically contains an infinite number of expressions. A formal
system itself does not have an explicit object called a “proof” but rather
the existence of a proof is implied indirectly by membership of an assertion
in a provable statement’s closure. We do this to make the formal system
easier to describe in the language of set theory.

3This definition of closure incorporates a simplification due to Josh Purinton.

166 APPENDIX C. METAMATH’S FORMAL SYSTEM

We also note that once established as provable, a statement may be
considered to acquire the same status as an axiomatic statement, because
if the set of axiomatic statements is extended with a provable statement,
the universe of the formal system remains unchanged (provided that VR
is infinite). In practice, this means we can build a hierarchy of provable
statements to more efficiently establish additional provable statements. This
is what we do in Metamath when we allow proofs to reference previous $p

statements as well as previous $a statements.

C.3 Examples of Formal Systems

Relationship to Metamath. The examples in this section, except Exam-
ple 2, are for the most part exact equivalents of the development in the set
theory database set.mm. You may want to compare Examples 1, 3, and 5
to Section 3.3, Example 4 to Sections 3.4.1 and 3.4.2, and Example 6 to
Section 3.4.3.

C.3.1 Example 1—Propositional Calculus

Classical propositional calculus can be described by the following formal
system. We assume the set of variables is infinite. Rather than denoting the
constants and variables by c0, c1, . . . and v0, v1, . . ., for readability we will
instead use more conventional symbols, with the understanding of course
that they denote distinct primitive objects. Also for readability we may
omit commas between successive terms of a sequence; thus 〈wff ϕ〉 denotes
〈wff, ϕ〉.

Let

CN = {wff,`,→,¬, (,)}

VR = {ϕ,ψ, χ, . . .}

T = {〈wff ϕ〉, 〈wff ψ〉, 〈wff χ〉, . . .}, i.e. those expressions of length 2
whose first member is wff and whose second member belongs to VR.4

Then Γ consists of the axiomatic statements that are the reducts of
following pre-statements:

〈∅, T,∅, 〈wff (ϕ→ ψ)〉〉
〈∅, T,∅, 〈wff ¬ϕ〉〉
〈∅, T,∅, 〈` (ϕ→ (ψ → ϕ))〉〉
〈∅, T,∅, 〈` ((ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)))〉〉

4For convenience we let T be an infinite set; the definition of a statement permits
this in principle. Since a Metamath source file has a finite size, in practice we must
of course use appropriate finite subsets of this T , specifically ones containing at least
the mandatory variable-type hypotheses. Similarly, in the source file we introduce new
variables as required, with the understanding that a potentially infinite number of them
are available.

C.3. EXAMPLES OF FORMAL SYSTEMS 167

〈∅, T,∅, 〈` ((¬ϕ→ ¬ψ)→ (ψ → ϕ))〉〉
〈∅, T, {〈` (ϕ→ ψ)〉, 〈` ϕ〉}, 〈` ψ〉〉

(For example, the reduct of 〈∅, T,∅, 〈wff (ϕ→ ψ)〉〉 is

〈∅, {〈wff ϕ〉, 〈wff ψ〉},∅, 〈wff (ϕ→ ψ)〉〉,

which is the first axiomatic statement.)
We call the members of VR wff variables or (in the context of first-order

logic which we will describe shortly) wff metavariables. Note that the sym-
bols φ, ψ, etc. denote actual specific members of VR; they are not metavari-
ables of our expository language (which we denote with α, β, etc.) but are
instead (meta)constant symbols (members of SM) from the point of view
of our expository language. The equivalent system of propositional calculus
described in [61] also uses the symbols φ, ψ, etc. to denote wff metavariables,
but in [61] unlike here those are metavariables of the expository language
and not primitive symbols of the formal system.

The first two statements define wffs: if ϕ and ψ are wffs, so is (ϕ→ ψ); if
ϕ is a wff, so is ¬ϕ. The next three are the axioms of propositional calculus:
if ϕ and ψ are wffs, then ` (ϕ → (ψ → ϕ)) is an (axiomatic) theorem; etc.
The last is the rule of modus ponens: if ϕ and ψ are wffs, and ` (ϕ → ψ)
and ` ϕ are theorems, then ` ψ is a theorem.

The correspondence to ordinary propositional calculus is as follows. We
consider only provable statements of the form 〈∅, T,∅, A〉 with T defined
as above. The first term of the assertion A of any such statement is either
“wff” or “`”. A statement for which first term is “wff” is a wff of proposi-
tional calculus, and one where the first term is “`” is a theorem (scheme) of
propositional calculus.

The universe of this formal system also contains many other provable
statements. Those with distinct-variable restrictions are irrelevant because
propositional calculus has no constraints on substitutions. Those that have
logical hypotheses we call inferences when the logical hypotheses are of the
form 〈`〉 _ w where w is a wff (with the leading constant term “wff”
removed). Inferences (other than the modus ponens rule) are not a proper
part of propositional calculus but are convenient to use when building a
hierarchy of provable statements. A provable statement with a nonsense
hypothesis such as 〈→,`,¬〉, and this same expression as its assertion, we
consider irrelevant; no use can be made of it in proving theorems, since there
is no way to eliminate the nonsense hypothesis.

Comment. Our use of parentheses in the definition of a wff illustrates
how axiomatic statements should be carefully stated in a way that ties in
unambiguously with the substitutions allowed by the formal system. There
are many ways we could have defined wffs—for example, Polish prefix no-
tation would have allowed us to omit parentheses entirely, at the expense of
readability—but we must define them in a way that is unambiguous. For
example, if we had omitted parentheses from the definition of (ϕ→ ψ), the
wff ¬ϕ → ψ could be interpreted as either ¬(ϕ → ψ) or (¬ϕ → ψ) and

168 APPENDIX C. METAMATH’S FORMAL SYSTEM

would have allowed us to prove nonsense. Note that there is no concept of
operator binding precedence built into our formal system.

C.3.2 Example 2—Predicate Calculus with Equality

Here we extend Example 1 to include predicate calculus with equality, illus-
trating the use of distinct-variable restrictions. This system is the same as
Tarski’s system S2 in [61] (except that the axioms of propositional calculus
are different but equivalent, and a redundant axiom is omitted). We extend
CN with the constants {var,∀,=}. We extend VR with an infinite set of
individual metavariables {x, y, z, . . .} and denote this subset Vr.

We also join to CN a possibly infinite set Pr of predicates {R,S, . . .}. We
associate with Pr a function rnk from Pr to ω, and for α ∈ Pr we call rnk(α)
the rank of the predicate α, which is simply the number of “arguments” that
the predicate has. (Most applications of predicate calculus will have a finite
number of predicates; for example, set theory has the single two-argument or
binary predicate ∈, which is usually written with its arguments surrounding
the predicate symbol rather than with the prefix notation we will use for
the general case.) As a device to facilitate our discussion, we will let Vs be
any fixed one-to-one function from ω to Vr; thus Vs is any simple infinite
sequence of individual metavariables with no repeating terms.

In this example we will not include the function symbols that are of-
ten part of formalizations of predicate calculus. Using metalogical argu-
ments that are beyond the scope of our discussion, it can be shown that our
formalization is equivalent when functions are introduced via appropriate
definitions.

We extend the set T defined in Example 1 with the expressions {〈var x〉,
〈var y〉, 〈var z〉, . . .}. We extend the Γ above with the axiomatic statements
that are the reducts of the following pre-statements:

〈∅, T,∅, 〈wff ∀xϕ〉〉
〈∅, T,∅, 〈wff x = y〉〉
〈∅, T, {〈` ϕ〉}, 〈` ∀xϕ〉〉
〈∅, T,∅, 〈` ((∀x(ϕ→ ψ)→ (∀xϕ→ ∀xψ))〉〉
〈{{x, ϕ}}, T,∅, 〈` (ϕ→ ∀xϕ)〉〉
〈{{x, y}}, T,∅, 〈` ¬∀x¬x = y〉〉
〈∅, T,∅, 〈` (x = z → (x = y → z = y))〉〉
〈∅, T,∅, 〈` (y = z → (x = y → x = z))〉〉

These are the axioms not involving predicate symbols. The first two state-
ments extend the definition of a wff. The third is the rule of generalization.
The fifth states, in effect, “For a wff ϕ and variable x, ` (ϕ → ∀xϕ), pro-
vided that x does not occur in ϕ.” The sixth states “For a variables x and

C.3. EXAMPLES OF FORMAL SYSTEMS 169

y, ` ¬∀x¬x = y, provided that x and y are distinct.” (This proviso is not
necessary but was included by Tarski to weaken the axiom and still show
that the system is logically complete.)

Finally, for each predicate symbol α ∈ Pr, we add to Γ the an axiomatic
statement, extending the definition of wff, that is the reduct of the following
pre-statement:

〈∅, T,∅, 〈wff, α〉 _ Vs � rnk(α)〉

and for each α ∈ Pr and each n < rnk(α) we add to Γ an equality axiom
that is the reduct of the following pre-statement:

〈∅, T,∅, 〈`, (,Vsn,=,Vsrnk(α)
,→, (, α〉_ Vs � rnk(α)

_ 〈→, α〉_ Vs � n _ 〈Vsrnk(α)
〉

_ Vs � (rnk(α) \ (n+ 1)) _ 〈),)〉〉

where � denotes function domain restriction and \ denotes set difference.
Recall that a subscript on Vs denotes one of its terms. (In the above two
axiom sets commas are placed between successive terms of sequences to
prevent ambiguity, and if you examine them with care you will be able
to distinguish those parentheses that denote constant symbols from those of
our expository language that delimit function arguments. Although it might
have been better to use boldface for our primitive symbols, unfortunately
boldface was not available for all characters on the LATEX system used to
typeset this text.) These seemingly forbidding axioms can be understood by
analogy to concatenation of substrings in a computer language. They are
actually relatively simple for each specific case and will become clearer by
looking at the special case of a binary predicate α = R where rnk(R) = 2.
Letting Vs be the sequence 〈x, y, z, . . .〉, the axioms we would add to Γ for
this case would be the wff extension and two equality axioms that are the
reducts of the pre-statements:

〈∅, T,∅, 〈wff Rxy〉〉
〈∅, T,∅, 〈` (x = z → (Rxy → Rzy))〉〉
〈∅, T,∅, 〈` (y = z → (Rxy → Rxz))〉〉

Study these carefully to see how the general axioms above evaluate to them.
In practice, typically only a few special cases such as this would be needed,
and in any case the Metamath language will only permit us to describe a
finite number of predicates, as opposed to the infinite number permitted
by the formal system. (If an infinite number should be needed for some
reason, we could not define the formal system directly in the Metamath
language but could instead define it metalogically under set theory as we do
in this appendix, and only the underlying set theory, with its single binary
predicate, would be defined directly in the Metamath language.)

170 APPENDIX C. METAMATH’S FORMAL SYSTEM

Comment. As we noted earlier, the specific variables denoted by the
symbols x, y, z, . . . ∈ Vr ⊆ VR ⊆ SM in Example 2 are not the actual vari-
ables of ordinary predicate calculus but should be thought of as metavari-
ables ranging over them. For example, a distinct-variable restriction would
be meaningless for actual variables of ordinary predicate calculus since two
different actual variables are by definition distinct. And when we talk about
an arbitrary representative α ∈ Vr, α is a metavariable (in our expository
language) that ranges over metavariables (which are primitives of our for-
mal system) each of which ranges over the actual individual variables of
predicate calculus (which are never mentioned in our formal system).

The constant called “var” above is called set in the set.mm database file,
but it means the same thing. I felt that “var” is a more meaningful name in
the context of predicate calculus, whose use is not limited to set theory. For
consistency we stick with the name “var” throughout this Appendix, even
after set theory is introduced.

C.3.3 Free Variables and Proper Substitution

In the system of Example 2, there are no primitive notions of free vari-
able and proper substitution. Tarski [61] shows that this system is logically
equivalent to the more typical textbook systems that do have these primi-
tive notions, if we introduce these notions with appropriate definitions and
metalogic. We could also define axioms for such systems directly, although
the recursive definitions of free variable and proper substitution would be
messy and awkward to work with. Instead, we mention two devices that
can be used in practice to mimic these notions. (1) Instead of introducing
special notation to express (as a logical hypothesis) “where x is not free in
ϕ” we can use the logical hypothesis ` (ϕ → ∀xϕ).5 (2) It can be shown
that the wff ((x = y → ϕ) ∧ ∃x(x = y ∧ ϕ)) (with the usual definitions of ∧
and ∃; see Example 4 below) is logically equivalent to “the wff that results
from proper substitution of y for x in ϕ.” This works whether or not x and
y are distinct.

C.3.4 Metalogical Completeness

In the system of Example 2, the following are provable pre-statements (and
their reducts are provable statements):

〈{{x, y}}, T,∅, 〈` ¬∀x¬x = y〉〉
〈∅, T,∅, 〈` ¬∀x¬x = x〉〉

whereas the following pre-statement is not to my knowledge provable (but
in any case we will pretend it’s not for sake of illustration) :

〈∅, T,∅, 〈` ¬∀x¬x = y〉〉
5This is a slightly weaker requirement than “where x is not free in ϕ.” If we let ϕ

be x = x, we have the theorem (x = x → ∀xx = x) which satisfies the hypothesis, even
though x is free in x = x . In a case like this we say that x is effectively not free in x = x,
since x = x is logically equivalent to ∀xx = x in which x is bound.

C.3. EXAMPLES OF FORMAL SYSTEMS 171

In other words, we can prove “¬∀x¬x = y where x and y are distinct” and
separately prove “¬∀x¬x = x”, but we can’t prove the combined general
case “¬∀x¬x = y” that has no proviso. Now this does not compromise logi-
cal completeness, because the variables are really metavariables and the two
provable cases together cover all possible cases. The third case can be con-
sidered a metatheorem whose direct proof, using the system of Example 2,
lies outside the capability of the formal system.

Also, in the system of Example 2 the following pre-statement is not to
my knowledge provable (again, a conjecture that we will pretend to be the
case):

〈∅, T,∅, 〈` (∀xϕ→ ϕ)〉〉

Instead, we can only prove specific cases of ϕ involving individual metavari-
ables, and by induction on formula length, prove as a metatheorem outside
of our formal system the general statement above. The details of this proof
are found in [25].

There does, however, exist a system of predicate calculus in which all
such “simple metatheorems” as those above can be proved directly, and we
present it in Example 3. A simple metatheorem is any statement of the
formal system of Example 2 where all distinct variable restrictions consist
of either two individual metavariables or an individual metavariable and
a wff metavariable, and which is provable by combining cases outside the
system as above. A system is metalogically complete if all of its simple
metatheorems are (directly) provable statements. The precise definition of
“simple metatheorem” and the proof of the “metalogical completeness” of
Example 3 is found in Remark 9.6 and Theorem 9.7 of [34].

C.3.5 Example 3—Metalogically Complete Predicate
Calculus with Equality

For simplicity we will assume there is one binary predicate R; this system
suffices for set theory, where the R is of course the ∈ predicate. We label the
axioms as they appear in [34]. This system is logically equivalent to that of
Example 2 (when the latter is restricted to this single binary predicate) but
is also metalogically complete.

Let

CN = {wff, var,`,→,¬, (,),∀,=, R}.

VR = {ϕ,ψ, χ, . . .} ∪ {x, y, z, . . .}.

T = {〈wff ϕ〉, 〈wff ψ〉, 〈wff χ〉, . . .} ∪ {〈var x〉, 〈var y〉, 〈var z〉, . . .}.
Then Γ consists of the reducts of the following pre-statements:

〈∅, T,∅, 〈wff (ϕ→ ψ)〉〉

172 APPENDIX C. METAMATH’S FORMAL SYSTEM

〈∅, T,∅, 〈wff ¬ϕ〉〉
〈∅, T,∅, 〈wff ∀xϕ〉〉
〈∅, T,∅, 〈wff x = y〉〉
〈∅, T,∅, 〈wff Rxy〉〉

(C1′) 〈∅, T,∅, 〈` (ϕ→ (ψ → ϕ))〉〉
(C2′) 〈∅, T,∅, 〈` ((ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)))〉〉
(C3′) 〈∅, T,∅, 〈` ((¬ϕ→ ¬ψ)→ (ψ → ϕ))〉〉
(C4′) 〈∅, T,∅, 〈` (∀x(∀xϕ→ ψ)→ (∀xϕ→ ∀xψ))〉〉
(C5′) 〈∅, T,∅, 〈` (∀xϕ→ ϕ)〉〉
(C6′) 〈∅, T,∅, 〈` (∀x∀y ϕ→ ∀y∀xϕ)〉〉
(C7′) 〈∅, T,∅, 〈` (¬ϕ→ ∀x¬∀xϕ)〉〉
(C8′) 〈∅, T,∅, 〈` (x = y → (x = z → y = z))〉〉
(C9′) 〈∅, T,∅, 〈` (¬∀xx = y → (¬∀xx = z → (y = z → ∀x y = z)))〉〉

(C10′) 〈∅, T,∅, 〈` (∀x(x = y → ∀xϕ)→ ϕ))〉〉
(C11′) 〈∅, T,∅, 〈` (∀xx = y → (∀xϕ→ ∀y ϕ))〉〉
(C12′) 〈∅, T,∅, 〈` (x = y → (Rxz → Ryz))〉〉
(C13′) 〈∅, T,∅, 〈` (x = y → (Rzx→ Rzy))〉〉
(C15′) 〈∅, T,∅, 〈` (¬∀xx = y → (x = y → (ϕ→ ∀x(x = y → ϕ))))〉〉
(C16′) 〈{{x, y}}, T,∅, 〈` (∀xx = y → (ϕ→ ∀xϕ))〉〉

(C5) 〈{{x, ϕ}}, T,∅, 〈` (ϕ→ ∀xϕ)〉〉
(MP) 〈∅, T, {〈` (ϕ→ ψ)〉, 〈` ϕ〉}, 〈` ψ〉〉
(Gen) 〈∅, T, {〈` ϕ〉}, 〈` ∀xϕ〉〉

While it is known that these axioms are “metalogically complete,” it is
not known whether they are independent (i.e. none is redundant) in the
metalogical sense; specifically, whether any axiom (possibly with additional
non-mandatory distinct-variable restrictions, for use with any dummy vari-
ables in its proof) is provable from the others. Note that metalogical inde-
pendence is a stronger requirement than independence in the usual logical
sense. Not all of the above axioms are logically independent: for example,
C9′ can be proved as a metatheorem from the others, outside the formal
system, by combining the possible cases of distinct variables.

C.3.6 Example 4—Adding Definitions

There are several ways to add definitions to a formal system. Probably the
most proper way is to consider definitions not as part of the formal system
at all but rather as abbreviations that are part of the expository metalogic
outside the formal system. For convenience, though, we may use the formal

C.3. EXAMPLES OF FORMAL SYSTEMS 173

system itself to incorporate definitions, adding them as axiomatic exten-
sions to the system. This could be done by adding a constant representing
the concept “is defined as” along with axioms for it. But there is a nicer
way, at least in this writer’s opinion, that introduces definitions as direct
extensions to the language rather than as extralogical primitive notions. We
introduce additional logical connectives and provide axioms for them. For
systems of logic such as Examples 1 through 3, the additional axioms must
be conservative in the sense that no wff of the original system that was not a
theorem (when the initial term “wff” is replaced by “`” of course) becomes
a theorem of the extended system. In this example we extend Example 3
(or 2) with standard abbreviations of logic.

We extend CN of Example 3 with new constants {↔,∧,∨,∃}, corre-
sponding to logical equivalence, conjunction, disjunction, and the existential
quantifier. We extend Γ with the axiomatic statements that are the reducts
of the following pre-statements:

〈∅, T,∅, 〈wff (ϕ↔ ψ)〉〉
〈∅, T,∅, 〈wff (ϕ ∨ ψ)〉〉
〈∅, T,∅, 〈wff (ϕ ∧ ψ)〉〉
〈∅, T,∅, 〈wff ∃xϕ〉〉
〈∅, T,∅, 〈` ((ϕ↔ ψ)→ (ϕ→ ψ))〉〉
〈∅, T,∅, 〈` ((ϕ↔ ψ)→ (ψ → ϕ))〉〉
〈∅, T,∅, 〈` ((ϕ→ ψ)→ ((ψ → ϕ)→ (ϕ↔ ψ)))〉〉
〈∅, T,∅, 〈` ((ϕ ∧ ψ)↔ ¬(ϕ→ ¬ψ))〉〉
〈∅, T,∅, 〈` ((ϕ ∨ ψ)↔ (¬ϕ→ ψ))〉〉
〈∅, T,∅, 〈` (∃xϕ↔ ¬∀x¬ϕ)〉〉

The first three logical axioms (statements containing “`”) introduce and
effectively define logical equivalence, “↔”. The last three use “↔” to effec-
tively mean “is defined as.”

C.3.7 Example 5—ZFC Set Theory

Here we add to the system of Example 4 the axioms of Zermelo-Fraenkel
set theory with Choice. For convenience we make use of the definitions in
Example 4.

In the CN of Example 4 (which extends Example 3), we replace the
symbol R with the symbol ∈. We remove from Γ of Example 4 the three
axiomatic statements containing R and replace them with the reducts of the
following:

〈∅, T,∅, 〈wff x ∈ y〉〉
〈∅, T,∅, 〈` (x = y → (x ∈ z → y ∈ z))〉〉

174 APPENDIX C. METAMATH’S FORMAL SYSTEM

〈∅, T,∅, 〈` (x = y → (z ∈ x→ z ∈ y))〉〉

Letting D = {{α, β} ∈ DV |α, β ∈ Vr} (in other words all individual vari-
ables must be distinct), we extend Γ with the ZFC axioms, called Exten-
sionality, Replacement, Union, Power Set, Regularity, Infinity, and Choice,
that are the reducts of:

Ext 〈D,T,∅, 〈` (∀x(x ∈ y ↔ x ∈ z)→ y = z)〉〉
Rep 〈D,T,∅, 〈` ∃x(∃y∀z(ϕ→ z = y)→ ∀z(z ∈ x↔ ∃x(x ∈ y ∧ ∀y ϕ)))〉〉
Un 〈D,T,∅, 〈` ∃x∀y(∃x(y ∈ x ∧ x ∈ z)→ y ∈ x)〉〉

Pow 〈D,T,∅, 〈` ∃x∀y(∀x(x ∈ y → x ∈ z)→ y ∈ x)〉〉
Reg 〈D,T,∅, 〈` (x ∈ y → ∃x(x ∈ y ∧ ∀z(z ∈ x→ ¬z ∈ y)))〉〉
Inf 〈D,T,∅, 〈` ∃x(y ∈ x ∧ ∀y(y ∈ x→ ∃z(y ∈ z ∧ z ∈ x)))〉〉
AC 〈D,T,∅, 〈` ∃x∀y∀z((y ∈ z∧z ∈ w)→ ∃w∀y(∃w((y ∈ z∧z ∈ w)∧(y ∈

w ∧ w ∈ x))↔ y = w))〉〉

C.3.8 Example 6—Class Notation in Set Theory

A powerful device that makes set theory easier (and that we have been
using all along in our informal expository language) is class abstraction no-
tation. The definitions we introduce are rigorously justified as conservative
by Takeuti and Zaring [59] or Quine [48]. The key idea is to introduce the
notation {x|—} which means “the class of all x such that —” for abstraction
classes and introduce (meta)variables that range over them. An abstraction
class may or may not be a set, depending on whether it exists (as a set). A
class that does not exist is called a proper class.

To illustrate the use of abstraction classes we will provide some exam-
ples of definitions that make use of them: the empty set, class union, and
unordered pair. Many other such definitions can be found in the Metamath
set theory database, set.mm.

We extend CN of Example 5 with new symbols {class, {, |, },∅,∪, , }
where the inner braces and last comma are constant symbols. (As before,
our dual use of some mathematical symbols for both our expository language
and as primitives of the formal system should be clear from context.)

We extend VR of Example 5 with a set of class variables {A,B,C, . . .}.
We extend the T of Example 5 with {〈class A〉, 〈class B〉, 〈class C〉, . . .}.

To introduce our definitions, we add to Γ of Example 5 the axiomatic
statements that are the reducts of the following pre-statements:

〈∅, T,∅, 〈class x〉〉
〈∅, T,∅, 〈class {x|ϕ}〉〉
〈∅, T,∅, 〈wff A = B〉〉
〈∅, T,∅, 〈wff A ∈ B〉〉

C.4. METAMATH AS A FORMAL SYSTEM 175

Ab 〈∅, T,∅, 〈` (y ∈ {x|ϕ} ↔ ((x = y → ϕ) ∧ ∃x(x = y ∧ ϕ)))〉〉
Eq 〈{{x,A}, {x,B}}, T,∅, 〈` (A = B ↔ ∀x(x ∈ A↔ x ∈ B))〉〉
El 〈{{x,A}, {x,B}}, T,∅, 〈` (A ∈ B ↔ ∃x(x = A ∧ x ∈ B))〉〉

Here we say that an individual variable is a class; {x|ϕ} is a class; and
we extend the definition of a wff to include class equality and membership.
Axiom Ab defines membership of a variable in a class abstraction; the right-
hand side can be read as “the wff that results from proper substitution
of y for x in ϕ.”6 Axioms Eq and El extend the meaning of the existing
equality and membership connectives. This is potentially dangerous and
requires careful justification. For example, from Eq we can derive the Axiom
of Extensionality with predicate logic alone; thus in principle we should
include the Axiom of Extensionality as a logical hypothesis. However we do
not bother to do this since we have already presupposed that axiom earlier.
The distinct variable restrictions should be read “where x does not occur
in A or B.” We typically do this when the right-hand side of a definition
involves an individual variable not in the expression being defined; it is done
so that the right-hand side remains independent of the particular “dummy”
variable we use.

We continue to add to Γ the following definitions (i.e. the reducts of the
following pre-statements) for empty set, class union, and unordered pair.
They should be self-explanatory. Analogous to our use of “↔” to define
new wffs in Example 4, we use “=” to define new abstraction terms, and
both may be read informally as “is defined as” in this context.

〈∅, T,∅, 〈class ∅〉〉
〈∅, T,∅, 〈` ∅ = {x|¬x = x}〉〉
〈∅, T,∅, 〈class (A ∪B)〉〉
〈{{x,A}, {x,B}}, T,∅, 〈` (A ∪B) = {x|(x ∈ A ∨ x ∈ B)}〉〉
〈∅, T,∅, 〈class {A,B}〉〉
〈{{x,A}, {x,B}}, T,∅, 〈` {A,B} = {x|(x = A ∨ x = B)}〉〉

C.4 Metamath as a Formal System

This section presupposes a familiarity with the Metamath computer lan-
guage.

Our theory describes formal systems and their universes. The Metamath
language provides a way of representing these set-theoretical objects to a

6Note that this definition makes unnecessary the introduction of a separate notation
similar to ϕ(x|y) for proper substitution, although we may choose to do so to be con-
ventional. Incidentally, ϕ(x|y) as it stands would be ambiguous in the formal systems of
our examples, since we wouldn’t know whether ¬ϕ(x|y) meant ¬(ϕ(x|y)) or (¬ϕ)(x|y).
Instead, we would have to use an unambiguous variant such as (ϕx|y).

176 APPENDIX C. METAMATH’S FORMAL SYSTEM

computer. A Metamath database, being a finite set of ascii characters, can
usually describe only a subset of a formal system and its universe, which are
typically infinite. However the database can contain as large a finite subset
of the formal system and its universe as we wish. (Of course a Metamath
set theory database can, in principle, indirectly describe an entire infinite
formal system by formalizing the expository language in this Appendix.)

For purpose of our discussion, we assume the Metamath database is in
the simple form described on p. 111, consisting of all constant and variable
declarations at the beginning, followed by a sequence of extended frames
each delimited by ${ and $}. Any Metamath database can be converted to
this form, as described on p. 114.

The math symbol tokens of a Metamath source file, which are declared
with $c and $v statements, are names we assign to representatives of CN and
VR. For definiteness we could assume that the first math symbol declared
as a variable corresponds to v0, the second to v1, etc., although the exact
correspondence we choose is not important.

In the Metamath language, each $d, $f, and $e source statement in
an extended frame (Section 4.2.7) corresponds respectively to a member of
the collections D, T , and H in a formal system statement 〈DM , TM , H,A〉.
The math symbol strings following these Metamath keywords correspond
to a variable pair (in the case of $d) or an expression (for the other two
keywords). The math symbol string following a $a source statement cor-
responds to expression A in an axiomatic statement of the formal system;
the one following a $p source statement corresponds to A in a provable
statement that is not axiomatic. In other words, each extended frame in a
Metamath database corresponds to a pre-statement of the formal system,
and a frame corresponds to a statement of the formal system. (Don’t confuse
the two meanings of “statement” here. A statement of the formal system
corresponds to the several statements in a Metamath database that may
constitute a frame.)

In order for the computer to verify that a formal system statement is
provable, each $p source statement is accompanied by a proof. However, the
proof does not correspond to anything in the formal system but is simply
a way of communicating to the computer the information needed for its
verification. The proof tells the computer how to construct specific members
of closure of the formal system pre-statement corresponding to the extended
frame of the $p statement. The final result of the construction is the member
of the closure that matches the $p statement. The abstract formal system,
on the other hand, is concerned only with the existence of members of the
closure.

As mentioned on p. 166, Examples 1 and 3–6 in the previous Section
parallel the development of logic and set theory in the Metamath database
set.mm. You may find it instructive to compare them.

Appendix D

The MIU System

The following is a listing of the file miu.mm. It is self-explanatory.

$(The MIU-system: A simple formal system $)

$(Note: This formal system is unusual in that it allows

empty wffs. To work with a proof, you must type

SET EMPTY_SUBSTITUTION ON before using the PROVE command.

By default, this is OFF in order to reduce the number of

ambiguous unification possibilities that have to be selected

during the construction of a proof. $)

$(

Hofstadter’s MIU-system is a simple example of a formal

system that illustrates some concepts of Metamath. See

Douglas R. Hofstadter, _Goedel, Escher, Bach: An Eternal

Golden Braid_ (Vintage Books, New York, 1979), pp. 33ff. for

a description of the MIU-system.

The system has 3 constant symbols, M, I, and U. The sole

axiom of the system is MI. There are 4 rules:

Rule I: If you possess a string whose last letter is I,

you can add on a U at the end.

Rule II: Suppose you have Mx. Then you may add Mxx to

your collection.

Rule III: If III occurs in one of the strings in your

collection, you may make a new string with U in place

of III.

Rule IV: If UU occurs inside one of your strings, you

can drop it.

Unfortunately, Rules III and IV do not have unique results:

177

178 APPENDIX D. THE MIU SYSTEM

strings could have more than one occurrence of III or UU.

This requires that we introduce the concept of an "MIU

well-formed formula" or wff, which allows us to construct

unique symbol sequences to which Rules III and IV can be

applied.

$)

$(First, we declare the constant symbols of the language.

Note that we need two symbols to distinguish the assertion

that a sequence is a wff from the assertion that it is a

theorem; we have arbitrarily chosen "wff" and "|-". $)

$c M I U |- wff $. $(Declare constants $)

$(Next, we declare some variables. $)

$v x y $.

$(Throughout our theory, we shall assume that these

variables represent wffs. $)

wx $f wff x $.

wy $f wff y $.

$(Define MIU-wffs. We allow the empty sequence to be a

wff. $)

$(The empty sequence is a wff. $)

we $a wff $.

$("M" after any wff is a wff. $)

wM $a wff x M $.

$("I" after any wff is a wff. $)

wI $a wff x I $.

$("U" after any wff is a wff. $)

wU $a wff x U $.

$(Assert the axiom. $)

ax $a |- M I $.

$(Assert the rules. $)

${

Ia $e |- x I $.

$(Given any theorem ending with "I", it remains a theorem

if "U" is added after it. (We distinguish the label I_

from the math symbol I to conform to the 24-Jun-2006

Metamath spec.) $)

I_ $a |- x I U $.

179

$}

${

IIa $e |- M x $.

$(Given any theorem starting with "M", it remains a theorem

if the part after the "M" is added again after it. $)

II $a |- M x x $.

$}

${

IIIa $e |- x I I I y $.

$(Given any theorem with "III" in the middle, it remains a

theorem if the "III" is replaced with "U". $)

III $a |- x U y $.

$}

${

IVa $e |- x U U y $.

$(Given any theorem with "UU" in the middle, it remains a

theorem if the "UU" is deleted. $)

IV $a |- x y $.

$}

$(Now we prove the theorem MUIIU. You may be interested in

comparing this proof with that of Hofstadter (pp. 35 - 36).

$)

theorem1 $p |- M U I I U $=

we wM wU wI we wI wU we wU wI wU we wM we wI wU we wM

wI wI wI we wI wI we wI ax II II I_ III II IV $.

The show proof /essential/lemmon/renumber command yields the
following display. It is very similar to the one in [24, pp. 35–36].

1 ax $a |- M I

2 1 II $a |- M I I

3 2 II $a |- M I I I I

4 3 I_ $a |- M I I I I U

5 4 III $a |- M U I U

6 5 II $a |- M U I U U I U

7 6 IV $a |- M U I I U

We note that Hofstadter’s “MU-puzzle,” which asks whether MU is a
theorem of the MIU-system, cannot be answered using the system above
because the MU-puzzle is a question about the system. To prove the answer
to the MU-puzzle, a much more elaborate system is needed, namely one that
models the MIU-system within set theory. (Incidentally, the answer to the
MU-puzzle is no.)

180 APPENDIX D. THE MIU SYSTEM

Bibliography

[1] Donald J. Albers and G. L. Alexanderson, editors. Mathematical People.
Contemporary Books, Inc., Chicago, 1985. [QA28.M37].

[2] Alan Ross Anderson and Nuel D. Belnap. Entailment, volume 1. Prince-
ton University Press, Princeton, 1975. [QA9.A634 1975 v.1].

[3] John D. Barrow. Theories of Everything: The Quest for Ultimate Ex-
planation. Oxford University Press, Oxford, 1991. [Q175.B225].

[4] H. Behnke, F. Backmann, K. Fladt, and W. Süss, editors. Fundamentals
of Mathematics, volume I. The MIT Press, Cambridge, Massachusetts,
1974. [QA37.2.B413].

[5] J. L. Bell and M. Machover. A Course in Mathematical Logic. North-
Holland, Amsterdam, 1977. [QA9.B3953].

[6] Andrea Blass. The interaction between category theory and set theory.
In John Walter Gray, editor, Mathematical Applications of Category
Theory (Proceedings of the Special Session on Mathematical Applica-
tions Category Theory, 89th Annual Meeting of the American Mathe-
matical Society, held in Denver, Colorado January 5–9, 1983), pages
5–29, Providence, Rhode Island, 1983. American Mathematical Society.
[QA169.A47 1983].

[7] W. W. Bledsoe and D. W. Loveland, editors. Automated Theorem Prov-
ing: After 25 Years (Proceedings of the Special Session on Automatic
Theorem Proving, 89th Annual Meeting of the American Mathemati-
cal Society, held in Denver, Colorado January 5–9, 1983), Providence,
Rhode Island, 1983. American Mathematical Society. [QA76.9.A96.S64
1983].

[8] George S. Boolos and Richard C. Jeffrey. Computability and Log-
ic. Cambridge University Press, Cambridge, third edition, 1989.
[QA9.59.B66 1989].

[9] John Campbell. Programmer’s Progress. White Star Software, Box
51623, Palo Alto, CA 94303, 1991.

181

182 BIBLIOGRAPHY

[10] Shang-Ching Chou. Proving elementary geometry theorems using Wu’s
algorithm. In W. W. Bledsoe and D. W. Loveland, editors, Automated
Theorem Proving: After 25 Years (Proceedings of the Special Session
on Automatic Theorem Proving, 89th Annual Meeting of the American
Mathematical Society, held in Denver, Colorado January 5–9, 1983),
pages 243–286, Providence, Rhode Island, 1983. American Mathemati-
cal Society. [QA76.9.A96.S64 1983].

[11] Richard Courant and Herbert Robbins. Topology. In James R. New-
man, editor, The World of Mathematics, Volume One, pages 573–590.
Simon and Schuster, New York, 1956. [QA3.W67 1988].

[12] Haskell B. Curry. Foundations of Mathematical Logic. Dover Publica-
tions, Inc., New York, 1977. [QA9.C976 1977].

[13] Philip J. Davis and Reuben Hersh. The Mathematical Experience.
Birkhäuser Boston, Boston, 1981. [QA8.4.D37 1982].

[14] Richard de Millo, Richard Lipton, and Alan Perlis. Social processes and
proofs of theorems and programs. In Thomas Tymoczko, editor, New
Directions in the Philosophy of Mathematics, pages 267–285. Birkhäuser
Boston, Inc., Boston, 1986. [QA8.6.N48 1986].

[15] Robert E. Edwards. A Formal Background to Mathematics. Springer-
Verlag, New York, 1979. [QA37.2.E38 v.1a].

[16] Herbert B. Enderton. Elements of Set Theory. Academic Press, Inc.,
San Diego, 1977. [QA248.E5].

[17] R. L. Goodstein. Development of Mathematical Logic. Springer-Verlag
New York Inc., New York, 1971. [QA9.G6554].

[18] Michael Guillen. Bridges to Infinity. Jeremy P. Tarcher, Inc., Los
Angeles, 1983. [QA93.G8].

[19] Alan G. Hamilton. Logic for Mathematicians. Cambridge University
Press, Cambridge, revised edition, 1988. [QA9.H298].

[20] John Robert Harrison. Metatheory and reflection in theorem proving:
A survey and critique. Technical Report CRC-053. SRI Cambridge,
Millers Yard, Cambridge, UK, 1995. Available on the Web as http:-
//www.cl.cam.ac.uk/users/jrh/papers/reflect.html.

[21] John Robert Harrison. Theorem proving with the real numbers. Tech-
nical Report 408, University of Cambridge Computer Laboratory, New
Museums Site, Pembroke Street, Cambridge, CB2 3QG, UK, 1996. Au-
thor’s PhD thesis, available on the Web at http://www.cl.cam.ac.uk-
/users/jrh/papers/thesis.html.

BIBLIOGRAPHY 183

[22] Horst Herrlich and George E. Strecker. Category Theory: An Introduc-
tion. Allyn and Bacon Inc., Boston, 1973. [QA169.H567].

[23] J. Roger Hindley and David Meredith. Principal type-schemes and
condensed detachment. The Journal of Symbolic Logic, 55:90–105, 1990.
[QA.J87].

[24] Douglas R. Hofstadter. Gödel, Escher, Bach. Basic Books, Inc., New
York, 1979. [QA9.H63 1980].

[25] D. Kalish and R. Montague. On Tarski’s formalization of predicate
logic with identity. Archiv für Mathematische Logik und Grundlagenfor-
schung, 7:81–101, 1965. [QA.A673].

[26] J. A. Kalman. Condensed detachment as a rule of inference. Studia
Logica, 42(4):443–451, 1983. [B18.P6.S933].

[27] Morris Kline. Mathematical Thought from Ancient to Modern Times.
Oxford University Press, New York, 1972. [QA21.K516 1990 v.3].

[28] Morris Kline. Mathematics, The Loss of Certainty. Oxford University
Press, New York, 1980. [QA21.K525].

[29] Edna E. Kramer. The Nature and Growth of Modern Mathematics.
Princeton University Press, Princeton, New Jersey, 1981. [QA93.K89
1981].

[30] Edmund Landau. Foundations of Analysis. Chelsea Publishing Com-
pany, New York, second edition, 1960. [QA241.L2541 1960].

[31] Hugues Leblanc. On Meyer and Lambert’s quantificational calculus
FQ. The Journal of Symbolic Logic, 33:275–280, 1968. [QA.J87].

[32] Czeslaw Lejewski. On implicational definitions. Studia Logica, 8:189–
208, 1958. [B18.P6.S933].

[33] Adrian R. D. Mathias. A term of length 4,523,659,424,929. Synthese,
133:75–86, 2002. [Q.S993].

[34] Norman D. Megill. A finitely axiomatized formalization of predicate
calculus with equality. Notre Dame Journal of Formal Logic, 36:435–
453, 1995. [QA.N914].

[35] Norman D. Megill and Martin W. Bunder. Weaker D-complete logics.
Journal of the IGPL, 4:215–225, 1996. Available on the Web at http:-
//www.mpi-sb.mpg.de/igpl/Journal/V4-2/#Megill.

[36] Elliott Mendelson. Introduction to Mathematical Logic. D. Van Nos-
trand Company, Inc., New York, second edition, 1979. [QA9.M537
1979].

184 BIBLIOGRAPHY

[37] C. A. Meredith. Single axioms for the systems (C,N), (C,O) and (A,N)
of the two-valued propositional calculus. The Journal of Computing
Systems, 3:155–164, 1953.

[38] David Meredith. In memoriam Carew Arthur Meredith (1904-1976).
Notre Dame Journal of Formal Logic, 18:513–516, 1977. [QA.N914].

[39] J. Donald Monk. Substitutionless predicate logic with identity. Archiv
für Mathematische Logik und Grundlagenforschung, 7:103–121, 1965.

[40] A. W. Moore. The Infinite. Routledge, New York, 1989. [BD411.M59].

[41] James R. Munkres. Topology: A First Course. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1975. [QA611.M82].

[42] E. Z. Nemesszeghy and E. A. Nemesszeghy. On strongly creative defini-
tions: A reply to V. F. Rickey. Logique et Analyse (N. S.), 20:111–115,
1977. [BC.L832].

[43] I. Németi. Algebraizations of quantifier logics, an overview. Ver-
sion 11.4, preprint, Mathematical Institute, Budapest, 1994. A short-
ened version without proofs appeared in “Algebraizations of quanti-
fier logics, an introductory overview,” Studia Logica, 50:485–569, 1991
[B18.P6.S933].

[44] M. Pavičić. A new axiomatization of unified quantum logic. Interna-
tional Journal of Theoretical Physics, 31:1753 –1766, 1992. [QC.I626].

[45] Roger Penrose. The Emperor’s New Mind. Oxford University Press,
New York, 1989. [Q335.P415].

[46] Ivars Peterson. The Mathematical Tourist. W. H. Freeman and Com-
pany, New York, 1988. [QA93.P475].

[47] Jeremy George Peterson. An automatic theorem prover for substitution
and detachment systems. Notre Dame Journal of Formal Logic, 19:119–
122, 1978. [QA.N914].

[48] Willard Van Orman Quine. Set Theory and Its Logic. The Belknap
Press of Harvard University Press, Cambridge, Massachusetts, revised
edition, 1969. [QA248.Q7 1969].

[49] J. A. Robinson. A machine-oriented logic based on the resolution prin-
ciple. Journal of the Association for Computing Machinery, 12:23–41,
1965.

[50] T. Thacher Robinson. Independence of two nice sets of axioms for
the propositional calculus. The Journal of Symbolic Logic, 33:265–270,
1968. [QA.J87].

BIBLIOGRAPHY 185

[51] Rudy Rucker. Infinity and the Mind: The Science and Philosophy of
the Infinite. Bantam Books, Inc., New York, 1982. [QA9.R79 1982].

[52] Bertrand Russell. Recent work on the principles of mathematics. In-
ternational Monthly, 4:84, 1901.

[53] Bertrand Russell. Mysticism and Logic, and Other Essays. Barnes &
Noble Books, Totowa, New Jersey, 1981. [B1649.R963.M9 1981].

[54] Joseph R. Shoenfield. Mathematical Logic. Addison-Wesley Publishing
Company, Inc., Reading, Massachusetts, 1967. [QA9.S52].

[55] Daniel Solow. How to Read and Do Proofs: An Introduction to Math-
ematical Thought Process. John Wiley & Sons, New York, 1982.
[QA9.S577].

[56] Harold M. Stark. An Introduction to Number Theory. Markham Pub-
lishing Company, Chicago, 1970. [QA241.S72 1978].

[57] E. R. Swart. The philosophical implications of the four-color prob-
lem. American Mathematical Monthly, 87:697–707, November 1980.
[QA.A5125].

[58] George G. Szpiro. Poincaré’s Prize: The Hundred-Year Quest to Solve
One of Math’s Greatest Puzzles. Penguin Books Ltd, London, 2007.
[QA43.S985 2007].

[59] Gaisi Takeuti and Wilson M. Zaring. Introduction to Axiomatic Set
Theory. Springer-Verlag New York Inc., New York, second edition,
1982. [QA248.T136 1982].

[60] Alfred Tarski. What is elementary geometry. In Leon Henkin, Patrick
Suppes, and Alfred Tarski, editors, The Axiomatic Method, with Special
Reference to Geometry and Physics (Proceedings of an International
Symposium held at the University of California, Berkeley, December
26, 1957 — January 4, 1958), pages 16–29, Amsterdam, 1959. North-
Holland Publishing Company.

[61] Alfred Tarski. A simplified formalization of predicate logic with iden-
tity. Archiv für Mathematische Logik und Grundlagenforschung, 7:61–
79, 1965. [QA.A673].

[62] Thomas Tymoczko, editor. New Directions in the Philosophy of Math-
ematics. Birkhäuser Boston, Inc., Boston, 1986. [QA8.6.N48 1986].

[63] Hao Wang. Theory and practice in mathematics. In Thomas Tymoczko,
editor, New Directions in the Philosophy of Mathematics, pages 129–
152. Birkhäuser Boston, Inc., Boston, 1986. [QA8.6.N48 1986].

186 BIBLIOGRAPHY

[64] Alfred North Whitehead. An Introduction to Mathematics, 1911.

[65] Alfred North Whitehead and Bertrand Russell. Principia Mathematica.
Cambridge University Press, Cambridge, second edition, 1927. (3 vols.)
[QA9.W592 1927].

[66] Stephen Wolfram. Mathematica: A System for Doing Mathematics by
Computer. Addison-Wesley Publishing Co., Redwood City, California,
second edition, 1991. [QA76.95.W65 1991].

[67] Larry Wos, Ross Overbeek, Ewing Lusk, and Jim Boyle. Automated
Reasoning: Introduction and Applications. McGraw-Hill, Inc., New
York, second edition, 1992. [QA76.9.A96.A93 1992].

Index

$(and $) auxiliary keywords, 38,
93, 97, 119

$. keyword, 38, 39, 46, 96, 98
$= keyword, 39, 46, 96, 98, 107, 114,

124
$[and $] auxiliary keywords, 93,

97, 122, 135
${ and $} keywords, 39, 96, 111, 112
$a statement, 38, 39, 89, 94, 96, 98,

104, 106–108, 113–115,
125, 135

$c statement, 38, 39, 93, 96, 99,
100, 113

$d statement, 63, 65, 95, 96,
100–102, 104, 105, 113,
118, 141, 146

compound, 94
simple, 94

$e statement, 38, 39, 94, 96, 98,
105, 106, 113, 114, 135,
138, 143, 146

$f statement, 38, 39, 45, 83, 94, 96,
98, 105, 106, 113–115, 135,
137, 145, 146

$p statement, 38, 39, 94, 96, 98,
106, 107, 113–115, 117,
124, 135, 136, 138

$t comment, 98, 119–121, 148, 155
$v statement, 38, 39, 93, 96, 99,

100, 113
[. . .] inside comments, 121, 149
_ inside comments, 121
~ inside comments, 119, 121
? in command lines, 46
? inside proofs, 46, 124

‘ inside comments, 119, 121
althtmldef statement, 149, 156
althtmldir statement, 149
assign command, 48, 143
beep command, 133
close log command, 132
close tex command, 147
delete command, 145
erase command, 132
exit command, 45, 131
exthtmlbibliography statement,

150
exthtmlhome statement, 150
exthtmllabel statement, 150
exthtmltitle statement, 150
help command, 45
htmlbibliography statement, 149
htmldef statement, 148, 156
htmldir statement, 149
htmlhome statement, 149
htmltitle statement, 149
htmlvarcolors statement, 149
improve command, 145
initialize command, 145
latexdef statement, 155
let command, 143
match command, 143
minimize_with command, 53, 141
more command, 133
open log command, 131
open tex command, 98, 147
prove command, 47, 141
read command, 41, 45, 46, 83, 134
save new_proof command, 52, 124,

146

187

188 INDEX

save proof command, 90, 124, 138
search command, 84, 88, 136
set echo command, 132
set empty_substitution

command, 49, 142
set height command, 133
set scroll command, 132
set search_limit command, 142
set unification_timeout

command, 141
set width command, 132
show trace_back command, 138
show labels command, 42, 135
show memory command, 135
show new_proof command, 47, 142
show proof command, 37, 42, 45,

46, 52, 86, 117, 118, 136
show settings command, 135
show statement command, 39, 42,

53, 63, 68, 84, 85, 135
show trace_back command, 17, 88
show usage command, 89, 137
submit command, 45, 132
tools command, 135, 151
unify command, 144
verify proof command, 41, 114,

124, 138
write bibliography command,

151
write recent_additions

command, 151
write source command, 46, 134
write theorem_list command,

150

abstract algebra, 3
abstraction class, 56, 70, 174

of nested ordered pairs, 127
of ordered pairs, 73

active math symbol, 93, 100, 113
active statement, 94, 113
addition, 127

of ordinals, 127
ambiguous unification, 49, 119, 142,

146

analysis, 3, 29
Anderson, Alan Ross, 17
Andréka, H., 105, 164
Appel, K., 23
ascii, 33, 92, 96
assertion, 39, 40, 94, 106, 114

in a formal system, 164
assertion label, 40, 115, 118
Auden, W. H., 5
Aussonderung, 78
automated proof verification, 19, 20
automated theorem proving, 21, 26,

27, 61
auxiliary keyword, 92, 96
axiom, vii, 2, 17, 19, 29, 31, 34–38,

55, 57, 88, 89, 98, 107, 108,
125, 126

Axiom of Choice, 17, 62, 66, 174
Axiom of Extensionality, 62, 65, 67,

71, 174
Axiom of Infinity, 32, 62, 66, 80, 174
Axiom of Pairing, 62, 78
Axiom of Power Sets, 62, 65, 174
Axiom of Regularity, 62, 66, 174
Axiom of Replacement, 62, 65, 174
Axiom of Separation, 62, 78
Axiom of the Null Set, 32, 62, 78
Axiom of Union, 62, 65, 174
axiom scheme, 35, 59, 63
axiom vs. definition, 89, 107, 125,

126
axiomatic assertion, 39, 106
axiomatic statement

in a formal system, 165
axioms for mathematics, 58
axioms in set.mm, 64
axioms of equality, 61, 64
axioms of logic, 56
axioms of predicate calculus, 60, 64
axioms of propositional calculus, 58,

64
axioms of set theory, 62, 65

Barrow, John D., xi
basic keyword, 96

INDEX 189

basic language, 96, 99, 114, 138, 146
Behnke, H., 30, 125
Bell, J. L., 68
Bible, 16
biconditional (↔), 65, 67, 68, 173
binary relation, 73, 81
Blass, Andrea, 31
Bledsoe, W. W., 27
block, 39, 93, 112

outermost, 93
Boolean algebra, 26
Boolos, George S., 15, 17
bound variable, 32, 100
Bourbaki, Nicolas, xi, 15
brace notation, 56
Bunder, Martin, 17
Burali-Forti paradox, 79

Cantor’s theorem, 79
Cantor, Georg, 23
cardinal, inaccessible, xii, 31
cardinal, transfinite, 23
cardinality, 23
category theory, xii, 29, 31
certainty, 18
Chou, Shang-Ching, 25
class, 67, 70

proper, 70, 174
class abstraction, 56, 70, 174
class difference, 72
class equality, 71
class membership, 71
class variable, 174
Clifford algebras, 24
closure, 165
Cohen, Paul, 23
collection, 61
command keyword, 41, 45, 83
command line interface (CLI), 40,

45
command qualifier, 42
comment, 93, 119
comments

markup notation, 119, 121
compact proof, 89

composition, 75
compound declaration, 100
compressed proof, 40, 52, 95, 123,

124, 159
computer algebra system, 3, 21, 24
computer program bugs, viii, 8, 12,

19, 21, 22, 25
computers and pure mathematics,

21
concatenation, 162
condensed detachment, 31

and first-order logic, 31
conjunction (∧), 65, 69, 87, 173
connective, 68
consistent theory, 18
constant, x, 38, 40, 68, 93, 99, 113

in a formal system, 162
in predicate calculus, 64

constant declaration, 38, 39, 99
constant-prefixed expression, 163
constant-variable pair, 163
constructive language, 20
constructivism, 17
continuum hypothesis, 23
Courant, Richard, 23
Courier font, 33
Coxeter, H. S. M., 24
cranks, 13
creative definition, 67, 125
cross product, 74
Curry, Haskell B., 18

database, 38, 92, 96, 134
Davis, Phillip J., 1, 12, 14, 30
de Millo, Richard, 15
de Saint-Exupery, Antoine, 161
decidable theory, 25
decision procedure, 61
declaration, 93
deduction theorem, 11
definiendum, 67
definiens, 67
definition, 15, 66, 88, 89, 98, 107,

125, 126, 172
creative, 67, 125

190 INDEX

eliminability, 67
proper, 108, 125

disjoint sets, 62
disjoint variables, 63, 101
disjoint-variable restriction, 94

in a formal system, 164
disjunction (∨), 69, 125, 173
distinct variables, 32, 63, 65, 100,

103
domain, 23, 74
dummy variable, 85, 110

eliminating, 27, 105
in definitions, 67

Edwards, Robert E., 14
effectively bound variable, 67
effectively not free, 76, 170
element, 61
empty domain, 32
empty set, 56, 72, 175
empty substitution, 101, 142
Enderton, Herbert B., 17, 23, 68, 84
epsilon relation, 73
equality (=), 60, 61, 67
error checking, 122, 148
errors in proofs, 22, 24
essential hypothesis, 39, 105
Euclidean geometry, xi, 23, 25
existential quantifier (∃), 65, 69, 173

restricted, 71
existential uniqueness quantifier

(∃!), 70
expression, 95, 99

in a formal system, 163
extended frame, 110
extended language, 97, 119

family, 61
Feferman, Solomon, xii
Fermat’s Last Theorem, 13, 23, 25
file inclusion, 93, 122
file names

Macintosh, 41, 123
Unix, 41, 129, 134

finitary proof, 29, 30

finite n-termed sequence, 162
finite induction, 79
first-order logic, 11, 20, 26, 31, 56

completeness, 11
floating hypothesis, 39, 105
formal logic, 19, 107
formal proof, x, 12, 13, 15, 19, 20,

32, 34, 36, 37, 42, 44, 46,
48

formal system, vii, ix, 2, 19, 29, 142,
165, 177

formalism, 30
foundations of mathematics, 17
founded relation, 73
four-color theorem, 21, 23
frame, 108
frames and scoping statements, 114
free logic, 32
free variable, 32, 60, 61, 63, 100,

106, 170
free vs. bound variable, 100
Frege, Gottlob, 18
function, 23, 75

in predicate calculus, 64
function value, 76

Gödel’s incompleteness theorem, ix,
5, 15, 18

gaps in proofs, 19
Ghilbert, xii
global statement, 113
Goodstein, R. L., 126
grave accent (‘), 119, 120
Grothendieck, Alexander, xii
group theory, 3
Guillen, Michael, 5

Haken, W., 23
Halmos, Paul, 21
Hamilton, Alan G., 60, 86
Hardy, G. H., 92
Harrison, John, 20, 25
Herrlich, Horst, 31
hierarchy, 13, 15, 19, 26, 88
higher-order logic, 20, 29

INDEX 191

Hilbert, David, 15, 16, 23, 29, 30
Hindley, J. Roger, 31
Hofstadter, Douglas R., 29, 36, 179
hol, 27, 28
html generation, 121, 136, 156
Hume, David, 22
Huntington, E. V., 26
hypothesis, 39, 94, 105
hypothesis association, 118
hypothesis label, 40, 115

iff, 73
image, 75
implication (→), 34, 58
implicit axiom, 32
included file, 93, 122
individual metavariable, 168
individual variable, 59
inference, 106, 167
inference rule, 35
infinite set, 56
infinity, 23
infix connective, 70
informal proof, 13, 15
integer, 56, 57
intersection, 72, 73
intuitionism, 17, 29, 126
Isabelle, 27

Kalman, J. A., 31
Kempe, A. B., 23
keyword, 38, 92, 96, 97
Kline, Morris, 18, 30
Koch, K., 23
Kronecker, Leopold, 16
Kuratowski, Kazimierz, 73

label, 39, 42, 45, 93, 96, 98, 103,
105, 107, 108, 115, 118

label declaration, 98
label mode, 120, 121
label reference, 98, 114
label sequence, 98, 114
labels in set.mm, 89
Landau, Edmund, 5

LATEX, ix, 34, 85, 98, 119, 137, 147,
148

characters per line, 133
LATEX definitions, 155
lcf, 28
Leśniewski, S., 125
Leblanc, Hugues, 32
Lejewski, Czeslaw, 125
Lemmon-style proof, 43
length of a sequence (| |), 162
Levien, Raph, xii
limit ordinal, 74
local label, 90
local variable, 113
logic, 2
logical equivalence (↔), 65, 67, 68,

173
logical hypothesis, 39, 105

in a formal system, 164
logical and (∧), 65, 69, 87
logical or (∨), 69
Lounesto, Pertti, 24

Mac Lane, Saunders, xii
Macintosh file names, 41, 123
macsyma, 3
mandatory $d statement, 118
mandatory disjoint-variable

restriction, 94
in a formal system, 164

mandatory hypothesis, 39, 42, 53,
94, 110, 115, 117, 118, 124

in a formal system, 164
mandatory variable, 94, 109
mandatory variable-type hypothesis

in a formal system, 164
Maple, 3, 25
mapping, 23
markup notation, 119, 121
math mode, 119, 120
math symbol, 38, 39, 44, 45, 60, 93,

96–99, 113, 120
Mathematica, 3, 24
Mathematica and proofs, 25
mathematical induction, 79

192 INDEX

Mathias, Adrian R. D., 15
Megill, Norman, 17, 27, 31, 32, 64,

105, 171
member, 61
Mendelson, Elliot, 34, 36
Meredith, C. A., 31, 58
metalanguage, 2, 17, 29
metalogic, 64, 126
metalogical completeness, 32, 170,

171
Metamath, vii–xi, 2–4, 15–17, 19,

20, 22, 24, 26, 29–31, 34,
35, 37, 38, 40, 41, 45, 46,
55, 58–61, 63, 83, 91,
96–99, 103, 106, 107, 118,
120–123, 125

as a formal system, 161
bugs, 131
commands, 129
installation, 33
limitations of version 0.07.30,

89, 92, 119, 134, 141, 148,
150, 155

memory limits, 134
memory usage, 135
representation of numbers, 3
self-description, 20
specification, 92
using as a math editor, 120

metamathematics, 30
metatheorem, 12, 32
metavariable, 34, 37–39, 60, 99, 101
Millay, Edna, 16
MIU-system, 29, 49, 142, 177
Miyaoka, Yoichi, 23
Mizar, xiii, 28
modal logic, 17, 29
model theory, 29
modus ponens, 35, 36, 59, 64
Monaco font, 33
Monk, J. Donald, 32
monospaced font, 33
Munkres, James R., 3, 161

natural number, 56, 66, 74, 80, 127

negation (¬), 58
Nemesszeghy, E. Z., 125
nested block, 112
nesting level, 112
non-scoping statement, 112
non-trivial theory, 100
normal proof, 40, 52, 123
null set, 72
number theory, 2, 34

object, 61
object language, 17
omega (ω), 57, 66, 74, 80
one-to-one function, 75
onto function, 75
operating system command, 133
operation, 76, 81
operator precedence, 35
optional disjoint-variable restriction,

110
optional hypothesis, 85, 110
optional variable, 85, 110
ordered pair, 73
ordinal addition, 127
ordinal number, 74
ordinal predicate, 74
otter, 27
outermost block, 112, 113, 123

pair, 72
parsing Metamath, 92
Pasch’s axiom, xi, 23
Pavičić, M., 17
Peano’s postulates, 66, 79
Penrose, Roger, 26
Perelman, Grigory, 24
Peterson, Jeremy George, 31
Pierce’s axiom, 120
plain text, 33
Poincaré conjecture, 24
Polish notation, 70
pop, 40, 115
postfix connective, 70
power class, 72
power set, 72

INDEX 193

pre-statement
in a formal system, 164

predicate calculus, 56, 59, 168
prefix connective, 70
Principia Mathematica, 30
printable character, 96
printers, 33
proof, 25, 35, 98, 114

compressed, 40, 52, 95, 123,
124, 159

Lemmon-style, 43
Metamath, 95
Metamath, description of, 114
normal, 40, 52, 123
tree-style, 43, 117

Proof Assistant, ix, 46–48, 51, 52,
119, 124, 131, 139, 141,
142, 144–146

proof length, 15, 21, 89
proof scheme, 35
proof step, 37
proof theory, 29
proper class, 70, 174
proper definition, 108, 125
proper substitution, 32, 60, 63, 69,

100, 170
propositional calculus, 31, 56, 58,

166
provable assertion, 39, 106
provable statement

in a formal system, 165
Purinton, Josh, xii, 165
push, 40, 115

qed project, 28
qualifying expression, 67
quantifier theory, 56
quantum logic, 3, 17, 29
quantum mechanics, 3
Quine, Willard Van Orman, 17, 68,

126, 174

Rêgo, Eduardo, 24
range, 75
rational number, 57

real and complex numbers, 3, 29
axioms for, 80

real number, 57
recursion operator, 127
recursive definition, 112, 126, 127
redeclaration of symbols, 39, 94, 113
reduct

in a formal system, 164
reflection principle, 20
relation, 75
restriction, 75
reverse Polish notation (RPN), 35,

115
Robbins algebra, 26
Robbins, Herbert, 26
Robinson’s resolution principle, 26,

31
Robinson, T. Thacher, 126
Rourke, Colin, 24
RPN order, 42, 110, 160
RPN stack, 40, 95, 115, 118
Rucker, Rudy, 6, 36, 55
rule, vii, 17, 31, 36, 59, 108
rule of generalization, 61, 64
Russell’s paradox, 9, 10, 18, 79
Russell, Bertrand, 15, 30, 91

Schröder-Bernstein theorem, 23
scope, 85, 100, 113
scoping statement, 93, 112
sentential logic, 56
set, 23, 61
set difference, 72
set intersection, 56
set theory, 2, 19, 29, 56, 61
set theory database (set.mm), 16,

27, 29, 31–33, 58–61, 63,
76, 83, 126, 148, 150, 155,
174, 176

set union, 56
Shoenfield, Joseph R., 30
simple declaration, 99
simple infinite sequence, 162
simple metatheorem, 171
singleton, 72

194 INDEX

Solovay, Robert, xii
Solow, Daniel, 8
source buffer, 46, 138, 146
source file, 96, 97, 122, 134
special characters, 92
stack, 40, 95, 115, 118
Stark, Harold M, 23
statement

in a formal system, 164
stylized epsilon (∈), 57, 60
subclass, 72
subset, 62, 72
substitution

implicit, 77
proper, 32, 60, 63, 69, 100, 170
variable, x, 31, 37, 39, 40, 47,

49, 63, 86, 87, 95, 99, 115,
118, 142, 163

substitution map, 95, 163
substitution theorem, 11
successor, 74, 79, 126
Swart, E. R., 21
symbol, 96

in a formal system, 162
syntax rules, 19, 34
Szpiro, George, 24

Takeuti, Gaisi, 68, 174
Tarski, Alfred, 25, 26, 32, 162
tautology, 59
temporary variable, 48, 141, 144
term, 34, 37, 162
text editor, 33
theorem, vii, 19, 25, 29, 31, 34–36,

38, 47, 55, 57, 59, 61, 106,
125

theorem scheme, 35
tilde (~), 119, 121
token, 38, 45, 46, 92, 96–99,

119–122, 134
topology, 3
transfinite recursion, 80
transitive class, 73
transitive set, 73
tree-style proof, 43, 117

trusting computers, 21
truth table, 59
turnstile (`), 38, 76, 98, 106
Tymoczko, Thomas, 17, 21
type, 99, 105
typesetting comment, 98, 119–121,

148, 155

Ulam, Stanislaw, 22
unification, 31, 47, 118

ambiguous, 49, 119, 142, 146
union, 72, 73, 175
universal class (V), 72
universal quantifier (∀), 60

restricted, 71
universe of a formal system, 165
Unix file names, 41, 129, 134
unordered pair, 72, 175
unordered triple, 72

variable, x, 39, 40, 99, 101, 113
in a formal system, 162
in ordinary mathematics, 101
in predicate calculus, 56, 59
in set theory, 57, 61
Metamath, 93

variable declaration, 38, 39, 99
variable substitution, x, 31, 37, 39,

40, 47, 49, 63, 86, 87, 95,
99, 115, 118, 142, 163

variable type, 99, 105
variable-type hypothesis, 39, 105

in a formal system, 164
Venn diagram, 62

Wang, Hao, 14
weak logic, 17, 20, 29
well-formed formula (wff), vii, 19,

20, 34, 37, 58, 60, 63, 83,
116, 125, 179

well-ordering, 74
Wen-tsün, Wu, 25
white space, 92, 96, 119–121, 124
Whitehead, Alfred North, 4, 30
Wiles, Andrew, 23

INDEX 195

Williams, Anthony, xiii
Word (Microsoft), 33
word processor, 33
Wos, Larry, 26, 27

Zermelo-Fraenkel set theory, 9, 32,
56, 61

ZFC set theory, 63, 173

	Preface
	Introduction
	Mathematics as a Computer Language
	Is Mathematics ``User-Friendly''?
	Mathematics and the Non-Specialist
	An Impossible Dream?
	Beauty
	Simplicity
	Rigor

	Computers and Mathematicians
	Trusting the Computer
	Trusting the Mathematician

	The Use of Computers in Mathematics
	Computer Algebra Systems
	Automated Theorem Provers
	Proof Verifiers

	Mathematics and Metamath
	Standard Mathematics
	Other Formal Systems
	Metamath and Its Philosophy
	A History of the Approach Behind Metamath
	Metamath and First-Order Logic

	Using the Metamath Program
	Installation
	Your First Formal System
	From Nothing to Zero
	Converting It to Metamath

	A Trial Run
	Some Hints for Using the Command Line Interface

	Your First Proof
	A Note About Editing a Database File

	Abstract Mathematics Revealed
	Logic and Set Theory
	The Axioms for All of Mathematics
	Propositional Calculus
	Predicate Calculus
	Equality
	Set Theory

	The Axioms in the Metamath Language
	Propositional Calculus
	Pure Predicate Calculus
	Equality and Substitution
	Set Theory
	That's It

	A Hierarchy of Definitions
	Definitions for Propositional Calculus
	Definitions for Predicate Calculus
	Definitions for Set Theory

	Tricks of the Trade
	A Theorem Sampler
	Axioms for Real and Complex Numbers
	Exploring the Set Theory Database
	A Note on ``Compact'' Proof Format

	The Metamath Language
	Specification of the Metamath Language
	Preliminaries
	Preprocessing
	Basic Syntax
	Proof Verification

	The Basic Keywords
	User-Defined Tokens
	Constants and Variables
	The $c and $v Declaration Statements
	The $d Statement
	The $f and $e Statements
	Assertions ($a and $p Statements)
	Frames
	Scoping Statements (${ and $})

	The Anatomy of a Proof
	The Concept of Unification

	Extensions to the Metamath Language
	Comments in the Metamath Language
	Comment Markup Notation for HTML
	Including Other Files in a Metamath Source File
	Compressed Proof Format
	Specifying Unknown Proofs or Subproofs

	Appendix: Axioms vs. Definitions

	The Metamath Program
	Invoking Metamath
	Controlling Metamath
	exit Command
	open log Command
	close log Command
	submit Command
	erase Command
	set echo Command
	set scroll Command
	set width Command
	set height Command
	beep Command
	more Command
	Operating System Commands
	Size Limitations in Metamath

	Reading and Writing Files
	read Command
	write source Command

	Showing Status and Statements
	show settings Command
	show memory Command
	show labels Command
	show statement Command
	search Command

	Displaying and Verifying Proofs
	show proof Command
	show usage Command
	show trace_back Command
	verify proof Command
	save proof Command

	Creating Proofs
	prove Command
	set unification_timeout Command
	set empty_substitution Command
	set search_limit Command
	show new_proof Command
	assign Command
	match Command
	let Command
	unify Command
	initialize Command
	delete Command
	improve Command
	save new_proof Command

	Creating LaTeX Output
	open tex Command
	close tex Command

	Creating HTML Output
	The Typesetting Comment ($t)
	write theorem_list Command
	write bibliography Command
	write recent_additions Command

	Text File Utilities
	tools Command
	help Command (in tools)
	Using tools to Build Metamath submit Scripts
	Example of a tools Session

	Math Symbol Tokens for Set Theory
	Compressed Proofs
	Metamath's Formal System
	Introduction
	The Formal Description
	Preliminaries
	Constants, Variables, and Expressions
	Substitution
	Statements
	Formal Systems

	Examples of Formal Systems
	Example 1—Propositional Calculus
	Example 2—Predicate Calculus with Equality
	Free Variables and Proper Substitution
	Metalogical Completeness
	Example 3—Metalogically Complete Predicate Calculus with Equality
	Example 4—Adding Definitions
	Example 5—ZFC Set Theory
	Example 6—Class Notation in Set Theory

	Metamath as a Formal System

	The MIU System
	Bibliography
	Index

